ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq1i Unicode version

Theorem neeq1i 2375
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.)
Hypothesis
Ref Expression
neeq1i.1  |-  A  =  B
Assertion
Ref Expression
neeq1i  |-  ( A  =/=  C  <->  B  =/=  C )

Proof of Theorem neeq1i
StepHypRef Expression
1 neeq1i.1 . 2  |-  A  =  B
2 neeq1 2373 . 2  |-  ( A  =  B  ->  ( A  =/=  C  <->  B  =/=  C ) )
31, 2ax-mp 5 1  |-  ( A  =/=  C  <->  B  =/=  C )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    =/= wne 2360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-cleq 2182  df-ne 2361
This theorem is referenced by:  neeq12i  2377  eqnetri  2383  eqnetrrid  2391  rabn0r  3464
  Copyright terms: Public domain W3C validator