ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb1lem Unicode version

Theorem eqsb1lem 2308
Description: Lemma for eqsb1 2309. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
eqsb1lem  |-  ( [ y  /  x ]
x  =  A  <->  y  =  A )
Distinct variable groups:    x, y    x, A
Allowed substitution hint:    A( y)

Proof of Theorem eqsb1lem
StepHypRef Expression
1 nfv 1551 . 2  |-  F/ x  y  =  A
2 eqeq1 2212 . 2  |-  ( x  =  y  ->  (
x  =  A  <->  y  =  A ) )
31, 2sbie 1814 1  |-  ( [ y  /  x ]
x  =  A  <->  y  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-cleq 2198
This theorem is referenced by:  eqsb1  2309
  Copyright terms: Public domain W3C validator