ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb1lem Unicode version

Theorem eqsb1lem 2332
Description: Lemma for eqsb1 2333. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
eqsb1lem  |-  ( [ y  /  x ]
x  =  A  <->  y  =  A )
Distinct variable groups:    x, y    x, A
Allowed substitution hint:    A( y)

Proof of Theorem eqsb1lem
StepHypRef Expression
1 nfv 1574 . 2  |-  F/ x  y  =  A
2 eqeq1 2236 . 2  |-  ( x  =  y  ->  (
x  =  A  <->  y  =  A ) )
31, 2sbie 1837 1  |-  ( [ y  /  x ]
x  =  A  <->  y  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-cleq 2222
This theorem is referenced by:  eqsb1  2333
  Copyright terms: Public domain W3C validator