ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb1lem Unicode version

Theorem eqsb1lem 2280
Description: Lemma for eqsb1 2281. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
eqsb1lem  |-  ( [ y  /  x ]
x  =  A  <->  y  =  A )
Distinct variable groups:    x, y    x, A
Allowed substitution hint:    A( y)

Proof of Theorem eqsb1lem
StepHypRef Expression
1 nfv 1528 . 2  |-  F/ x  y  =  A
2 eqeq1 2184 . 2  |-  ( x  =  y  ->  (
x  =  A  <->  y  =  A ) )
31, 2sbie 1791 1  |-  ( [ y  /  x ]
x  =  A  <->  y  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-cleq 2170
This theorem is referenced by:  eqsb1  2281
  Copyright terms: Public domain W3C validator