ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb1lem Unicode version

Theorem eqsb1lem 2274
Description: Lemma for eqsb1 2275. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
eqsb1lem  |-  ( [ y  /  x ]
x  =  A  <->  y  =  A )
Distinct variable groups:    x, y    x, A
Allowed substitution hint:    A( y)

Proof of Theorem eqsb1lem
StepHypRef Expression
1 nfv 1522 . 2  |-  F/ x  y  =  A
2 eqeq1 2178 . 2  |-  ( x  =  y  ->  (
x  =  A  <->  y  =  A ) )
31, 2sbie 1785 1  |-  ( [ y  /  x ]
x  =  A  <->  y  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1349   [wsb 1756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1441  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-ext 2153
This theorem depends on definitions:  df-bi 116  df-nf 1455  df-sb 1757  df-cleq 2164
This theorem is referenced by:  eqsb1  2275
  Copyright terms: Public domain W3C validator