Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsb1lem | Unicode version |
Description: Lemma for eqsb1 2275. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
eqsb1lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1522 | . 2 | |
2 | eqeq1 2178 | . 2 | |
3 | 1, 2 | sbie 1785 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1349 wsb 1756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1441 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-nf 1455 df-sb 1757 df-cleq 2164 |
This theorem is referenced by: eqsb1 2275 |
Copyright terms: Public domain | W3C validator |