ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb1 Unicode version

Theorem eqsb1 2274
Description: Substitution for the left-hand side in an equality. Class version of equsb3 1944. (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb1  |-  ( [ y  /  x ]
x  =  A  <->  y  =  A )
Distinct variable group:    x, A
Allowed substitution hint:    A( y)

Proof of Theorem eqsb1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqsb1lem 2273 . . 3  |-  ( [ w  /  x ]
x  =  A  <->  w  =  A )
21sbbii 1758 . 2  |-  ( [ y  /  w ] [ w  /  x ] x  =  A  <->  [ y  /  w ]
w  =  A )
3 nfv 1521 . . 3  |-  F/ w  x  =  A
43sbco2 1958 . 2  |-  ( [ y  /  w ] [ w  /  x ] x  =  A  <->  [ y  /  x ]
x  =  A )
5 eqsb1lem 2273 . 2  |-  ( [ y  /  w ]
w  =  A  <->  y  =  A )
62, 4, 53bitr3i 209 1  |-  ( [ y  /  x ]
x  =  A  <->  y  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-cleq 2163
This theorem is referenced by:  pm13.183  2868  eqsbc1  2994
  Copyright terms: Public domain W3C validator