ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb1 Unicode version

Theorem eqsb1 2281
Description: Substitution for the left-hand side in an equality. Class version of equsb3 1951. (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb1  |-  ( [ y  /  x ]
x  =  A  <->  y  =  A )
Distinct variable group:    x, A
Allowed substitution hint:    A( y)

Proof of Theorem eqsb1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqsb1lem 2280 . . 3  |-  ( [ w  /  x ]
x  =  A  <->  w  =  A )
21sbbii 1765 . 2  |-  ( [ y  /  w ] [ w  /  x ] x  =  A  <->  [ y  /  w ]
w  =  A )
3 nfv 1528 . . 3  |-  F/ w  x  =  A
43sbco2 1965 . 2  |-  ( [ y  /  w ] [ w  /  x ] x  =  A  <->  [ y  /  x ]
x  =  A )
5 eqsb1lem 2280 . 2  |-  ( [ y  /  w ]
w  =  A  <->  y  =  A )
62, 4, 53bitr3i 210 1  |-  ( [ y  /  x ]
x  =  A  <->  y  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-cleq 2170
This theorem is referenced by:  pm13.183  2876  eqsbc1  3003
  Copyright terms: Public domain W3C validator