ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb1lem GIF version

Theorem eqsb1lem 2309
Description: Lemma for eqsb1 2310. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
eqsb1lem ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem eqsb1lem
StepHypRef Expression
1 nfv 1552 . 2 𝑥 𝑦 = 𝐴
2 eqeq1 2213 . 2 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
31, 2sbie 1815 1 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-cleq 2199
This theorem is referenced by:  eqsb1  2310
  Copyright terms: Public domain W3C validator