ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71 Unicode version

Theorem pm4.71 389
Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 2-Dec-2012.)
Assertion
Ref Expression
pm4.71  |-  ( (
ph  ->  ps )  <->  ( ph  <->  (
ph  /\  ps )
) )

Proof of Theorem pm4.71
StepHypRef Expression
1 simpl 109 . . 3  |-  ( (
ph  /\  ps )  ->  ph )
21biantru 302 . 2  |-  ( (
ph  ->  ( ph  /\  ps ) )  <->  ( ( ph  ->  ( ph  /\  ps ) )  /\  (
( ph  /\  ps )  ->  ph ) ) )
3 anclb 319 . 2  |-  ( (
ph  ->  ps )  <->  ( ph  ->  ( ph  /\  ps ) ) )
4 dfbi2 388 . 2  |-  ( (
ph 
<->  ( ph  /\  ps ) )  <->  ( ( ph  ->  ( ph  /\  ps ) )  /\  (
( ph  /\  ps )  ->  ph ) ) )
52, 3, 43bitr4i 212 1  |-  ( (
ph  ->  ps )  <->  ( ph  <->  (
ph  /\  ps )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.71r  390  pm4.71i  391  pm4.71d  393  bigolden  955  pm5.75  962  exintrbi  1631  rabid2  2651  dfss2  3142  disj3  3473  dmopab3  4833
  Copyright terms: Public domain W3C validator