ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  festino Unicode version

Theorem festino 2125
Description: "Festino", one of the syllogisms of Aristotelian logic. No  ph is  ps, and some  ch is  ps, therefore some  ch is not  ph. (In Aristotelian notation, EIO-2: PeM and SiM therefore SoP.) (Contributed by David A. Wheeler, 25-Nov-2016.)
Hypotheses
Ref Expression
festino.maj  |-  A. x
( ph  ->  -.  ps )
festino.min  |-  E. x
( ch  /\  ps )
Assertion
Ref Expression
festino  |-  E. x
( ch  /\  -.  ph )

Proof of Theorem festino
StepHypRef Expression
1 festino.min . 2  |-  E. x
( ch  /\  ps )
2 festino.maj . . . . 5  |-  A. x
( ph  ->  -.  ps )
32spi 1529 . . . 4  |-  ( ph  ->  -.  ps )
43con2i 622 . . 3  |-  ( ps 
->  -.  ph )
54anim2i 340 . 2  |-  ( ( ch  /\  ps )  ->  ( ch  /\  -.  ph ) )
61, 5eximii 1595 1  |-  E. x
( ch  /\  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1346   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator