| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2i | Unicode version | ||
| Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1i.1 |
|
| Ref | Expression |
|---|---|
| anim2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | anim1i.1 |
. 2
| |
| 3 | 1, 2 | anim12i 338 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: sylanl2 403 sylanr2 405 andi 819 xoranor 1396 19.41h 1707 sbimi 1786 equs5e 1817 exdistrfor 1822 equs45f 1824 sbidm 1873 eu3h 2098 eupickb 2134 2exeu 2145 darii 2153 festino 2159 baroco 2160 r19.27v 2632 r19.27av 2640 rspc2ev 2891 reu3 2962 difdif 3297 ssddif 3406 inssdif 3408 difin 3409 difindiss 3426 indifdir 3428 difrab 3446 iundif2ss 3992 trssord 4426 ordsuc 4610 find 4646 imainss 5097 dffun5r 5282 fof 5497 f1ocnv 5534 fv3 5598 relelfvdm 5607 funimass4 5628 fvelimab 5634 funconstss 5697 dff2 5723 dffo5 5728 dff1o6 5844 oprabid 5975 ssoprab2i 6033 uchoice 6222 releldm2 6270 ixpf 6806 recexgt0sr 7885 map2psrprg 7917 lediv2a 8967 lbreu 9017 elfzp12 10220 fihashf1rn 10931 ccatsymb 11056 cau3lem 11396 fsumcl2lem 11680 dvdsnegb 12090 dvds2add 12107 dvds2sub 12108 ndvdssub 12212 gcd2n0cl 12261 divgcdcoprmex 12395 cncongr1 12396 ctinfom 12770 qusecsub 13638 istopfin 14443 toponcom 14470 cnptoprest 14682 dvmptfsum 15168 elply2 15178 |
| Copyright terms: Public domain | W3C validator |