![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim2i | Unicode version |
Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anim1i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anim2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | anim1i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | anim12i 338 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: sylanl2 403 sylanr2 405 andi 818 pm4.55dc 938 xoranor 1377 19.41h 1685 sbimi 1764 equs5e 1795 exdistrfor 1800 equs45f 1802 sbidm 1851 eu3h 2071 eupickb 2107 2exeu 2118 darii 2126 festino 2132 baroco 2133 r19.27v 2604 r19.27av 2612 rspc2ev 2858 reu3 2929 difdif 3262 ssddif 3371 inssdif 3373 difin 3374 difindiss 3391 indifdir 3393 difrab 3411 iundif2ss 3954 trssord 4382 ordsuc 4564 find 4600 imainss 5046 dffun5r 5230 fof 5440 f1ocnv 5476 fv3 5540 relelfvdm 5549 funimass4 5569 fvelimab 5575 funconstss 5637 dff2 5663 dffo5 5668 dff1o6 5780 oprabid 5910 ssoprab2i 5967 releldm2 6189 ixpf 6723 recexgt0sr 7775 map2psrprg 7807 lediv2a 8855 lbreu 8905 elfzp12 10102 fihashf1rn 10771 cau3lem 11126 fsumcl2lem 11409 dvdsnegb 11818 dvds2add 11835 dvds2sub 11836 ndvdssub 11938 gcd2n0cl 11973 divgcdcoprmex 12105 cncongr1 12106 ctinfom 12432 istopfin 13688 toponcom 13715 cnptoprest 13927 |
Copyright terms: Public domain | W3C validator |