| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2i | Unicode version | ||
| Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1i.1 |
|
| Ref | Expression |
|---|---|
| anim2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | anim1i.1 |
. 2
| |
| 3 | 1, 2 | anim12i 338 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: sylanl2 403 sylanr2 405 andi 820 xoranor 1397 19.41h 1708 sbimi 1787 equs5e 1818 exdistrfor 1823 equs45f 1825 sbidm 1874 eu3h 2099 eupickb 2135 2exeu 2146 darii 2154 festino 2160 baroco 2161 r19.27v 2633 r19.27av 2641 rspc2ev 2892 reu3 2963 difdif 3298 ssddif 3407 inssdif 3409 difin 3410 difindiss 3427 indifdir 3429 difrab 3447 iundif2ss 3993 trssord 4427 ordsuc 4611 find 4647 imainss 5098 dffun5r 5283 fof 5498 f1ocnv 5535 fv3 5599 relelfvdm 5608 funimass4 5629 fvelimab 5635 funconstss 5698 dff2 5724 dffo5 5729 dff1o6 5845 oprabid 5976 ssoprab2i 6034 uchoice 6223 releldm2 6271 ixpf 6807 recexgt0sr 7886 map2psrprg 7918 lediv2a 8968 lbreu 9018 elfzp12 10221 fihashf1rn 10933 ccatsymb 11058 cau3lem 11425 fsumcl2lem 11709 dvdsnegb 12119 dvds2add 12136 dvds2sub 12137 ndvdssub 12241 gcd2n0cl 12290 divgcdcoprmex 12424 cncongr1 12425 ctinfom 12799 qusecsub 13667 istopfin 14472 toponcom 14499 cnptoprest 14711 dvmptfsum 15197 elply2 15207 |
| Copyright terms: Public domain | W3C validator |