| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2i | Unicode version | ||
| Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1i.1 |
|
| Ref | Expression |
|---|---|
| anim2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | anim1i.1 |
. 2
| |
| 3 | 1, 2 | anim12i 338 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: sylanl2 403 sylanr2 405 andi 823 xoranor 1419 19.41h 1731 sbimi 1810 equs5e 1841 exdistrfor 1846 equs45f 1848 sbidm 1897 eu3h 2123 eupickb 2159 2exeu 2170 darii 2178 festino 2184 baroco 2185 r19.27v 2658 r19.27av 2666 rspc2ev 2922 reu3 2993 difdif 3329 ssddif 3438 inssdif 3440 difin 3441 difindiss 3458 indifdir 3460 difrab 3478 iundif2ss 4030 trssord 4470 ordsuc 4654 find 4690 imainss 5143 dffun5r 5329 fof 5547 f1ocnv 5584 fv3 5649 relelfvdm 5658 funimass4 5683 fvelimab 5689 funconstss 5752 dff2 5778 dffo5 5783 dff1o6 5899 oprabid 6032 ssoprab2i 6092 uchoice 6281 releldm2 6329 ixpf 6865 recexgt0sr 7956 map2psrprg 7988 lediv2a 9038 lbreu 9088 elfzp12 10291 fihashf1rn 11005 ccatsymb 11132 swrdpfx 11234 pfxpfx 11235 pfxccatin12 11260 cau3lem 11620 fsumcl2lem 11904 dvdsnegb 12314 dvds2add 12331 dvds2sub 12332 ndvdssub 12436 gcd2n0cl 12485 divgcdcoprmex 12619 cncongr1 12620 ctinfom 12994 qusecsub 13863 istopfin 14668 toponcom 14695 cnptoprest 14907 dvmptfsum 15393 elply2 15403 |
| Copyright terms: Public domain | W3C validator |