| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2i | Unicode version | ||
| Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1i.1 |
|
| Ref | Expression |
|---|---|
| anim2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | anim1i.1 |
. 2
| |
| 3 | 1, 2 | anim12i 338 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: sylanl2 403 sylanr2 405 andi 820 xoranor 1397 19.41h 1709 sbimi 1788 equs5e 1819 exdistrfor 1824 equs45f 1826 sbidm 1875 eu3h 2101 eupickb 2137 2exeu 2148 darii 2156 festino 2162 baroco 2163 r19.27v 2635 r19.27av 2643 rspc2ev 2899 reu3 2970 difdif 3306 ssddif 3415 inssdif 3417 difin 3418 difindiss 3435 indifdir 3437 difrab 3455 iundif2ss 4007 trssord 4445 ordsuc 4629 find 4665 imainss 5117 dffun5r 5302 fof 5520 f1ocnv 5557 fv3 5622 relelfvdm 5631 funimass4 5652 fvelimab 5658 funconstss 5721 dff2 5747 dffo5 5752 dff1o6 5868 oprabid 5999 ssoprab2i 6057 uchoice 6246 releldm2 6294 ixpf 6830 recexgt0sr 7921 map2psrprg 7953 lediv2a 9003 lbreu 9053 elfzp12 10256 fihashf1rn 10970 ccatsymb 11096 swrdpfx 11198 pfxpfx 11199 pfxccatin12 11224 cau3lem 11540 fsumcl2lem 11824 dvdsnegb 12234 dvds2add 12251 dvds2sub 12252 ndvdssub 12356 gcd2n0cl 12405 divgcdcoprmex 12539 cncongr1 12540 ctinfom 12914 qusecsub 13782 istopfin 14587 toponcom 14614 cnptoprest 14826 dvmptfsum 15312 elply2 15322 |
| Copyright terms: Public domain | W3C validator |