| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > anim2i | Unicode version | ||
| Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| anim1i.1 | 
 | 
| Ref | Expression | 
|---|---|
| anim2i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | 
. 2
 | |
| 2 | anim1i.1 | 
. 2
 | |
| 3 | 1, 2 | anim12i 338 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: sylanl2 403 sylanr2 405 andi 819 xoranor 1388 19.41h 1699 sbimi 1778 equs5e 1809 exdistrfor 1814 equs45f 1816 sbidm 1865 eu3h 2090 eupickb 2126 2exeu 2137 darii 2145 festino 2151 baroco 2152 r19.27v 2624 r19.27av 2632 rspc2ev 2883 reu3 2954 difdif 3288 ssddif 3397 inssdif 3399 difin 3400 difindiss 3417 indifdir 3419 difrab 3437 iundif2ss 3982 trssord 4415 ordsuc 4599 find 4635 imainss 5085 dffun5r 5270 fof 5480 f1ocnv 5517 fv3 5581 relelfvdm 5590 funimass4 5611 fvelimab 5617 funconstss 5680 dff2 5706 dffo5 5711 dff1o6 5823 oprabid 5954 ssoprab2i 6011 uchoice 6195 releldm2 6243 ixpf 6779 recexgt0sr 7840 map2psrprg 7872 lediv2a 8922 lbreu 8972 elfzp12 10174 fihashf1rn 10880 cau3lem 11279 fsumcl2lem 11563 dvdsnegb 11973 dvds2add 11990 dvds2sub 11991 ndvdssub 12095 gcd2n0cl 12136 divgcdcoprmex 12270 cncongr1 12271 ctinfom 12645 qusecsub 13461 istopfin 14236 toponcom 14263 cnptoprest 14475 dvmptfsum 14961 elply2 14971 | 
| Copyright terms: Public domain | W3C validator |