| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2i | Unicode version | ||
| Description: Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1i.1 |
|
| Ref | Expression |
|---|---|
| anim2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | anim1i.1 |
. 2
| |
| 3 | 1, 2 | anim12i 338 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: sylanl2 403 sylanr2 405 andi 819 xoranor 1388 19.41h 1699 sbimi 1778 equs5e 1809 exdistrfor 1814 equs45f 1816 sbidm 1865 eu3h 2090 eupickb 2126 2exeu 2137 darii 2145 festino 2151 baroco 2152 r19.27v 2624 r19.27av 2632 rspc2ev 2883 reu3 2954 difdif 3289 ssddif 3398 inssdif 3400 difin 3401 difindiss 3418 indifdir 3420 difrab 3438 iundif2ss 3983 trssord 4416 ordsuc 4600 find 4636 imainss 5086 dffun5r 5271 fof 5483 f1ocnv 5520 fv3 5584 relelfvdm 5593 funimass4 5614 fvelimab 5620 funconstss 5683 dff2 5709 dffo5 5714 dff1o6 5826 oprabid 5957 ssoprab2i 6015 uchoice 6204 releldm2 6252 ixpf 6788 recexgt0sr 7857 map2psrprg 7889 lediv2a 8939 lbreu 8989 elfzp12 10191 fihashf1rn 10897 cau3lem 11296 fsumcl2lem 11580 dvdsnegb 11990 dvds2add 12007 dvds2sub 12008 ndvdssub 12112 gcd2n0cl 12161 divgcdcoprmex 12295 cncongr1 12296 ctinfom 12670 qusecsub 13537 istopfin 14320 toponcom 14347 cnptoprest 14559 dvmptfsum 15045 elply2 15055 |
| Copyright terms: Public domain | W3C validator |