Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funfnd | Unicode version |
Description: A function is a function over its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funfnd.1 |
Ref | Expression |
---|---|
funfnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfnd.1 | . 2 | |
2 | funfn 5238 | . 2 | |
3 | 1, 2 | sylib 122 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 cdm 4620 wfun 5202 wfn 5203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1447 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 df-fn 5211 |
This theorem is referenced by: ennnfonelemf1 12386 dvfgg 13737 |
Copyright terms: Public domain | W3C validator |