ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funi Unicode version

Theorem funi 5350
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi  |-  Fun  _I

Proof of Theorem funi
StepHypRef Expression
1 reli 4851 . 2  |-  Rel  _I
2 relcnv 5106 . . . . 5  |-  Rel  `'  _I
3 coi2 5245 . . . . 5  |-  ( Rel  `'  _I  ->  (  _I  o.  `'  _I  )  =  `'  _I  )
42, 3ax-mp 5 . . . 4  |-  (  _I  o.  `'  _I  )  =  `'  _I
5 cnvi 5133 . . . 4  |-  `'  _I  =  _I
64, 5eqtri 2250 . . 3  |-  (  _I  o.  `'  _I  )  =  _I
76eqimssi 3280 . 2  |-  (  _I  o.  `'  _I  )  C_  _I
8 df-fun 5320 . 2  |-  ( Fun 
_I 
<->  ( Rel  _I  /\  (  _I  o.  `'  _I  )  C_  _I  )
)
91, 7, 8mpbir2an 948 1  |-  Fun  _I
Colors of variables: wff set class
Syntax hints:    = wceq 1395    C_ wss 3197    _I cid 4379   `'ccnv 4718    o. ccom 4723   Rel wrel 4724   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-fun 5320
This theorem is referenced by:  cnvresid  5395  fnresi  5441  fvi  5691  ssdomg  6930  residfi  7107  climshft2  11817
  Copyright terms: Public domain W3C validator