ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funi Unicode version

Theorem funi 5303
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi  |-  Fun  _I

Proof of Theorem funi
StepHypRef Expression
1 reli 4807 . 2  |-  Rel  _I
2 relcnv 5060 . . . . 5  |-  Rel  `'  _I
3 coi2 5199 . . . . 5  |-  ( Rel  `'  _I  ->  (  _I  o.  `'  _I  )  =  `'  _I  )
42, 3ax-mp 5 . . . 4  |-  (  _I  o.  `'  _I  )  =  `'  _I
5 cnvi 5087 . . . 4  |-  `'  _I  =  _I
64, 5eqtri 2226 . . 3  |-  (  _I  o.  `'  _I  )  =  _I
76eqimssi 3249 . 2  |-  (  _I  o.  `'  _I  )  C_  _I
8 df-fun 5273 . 2  |-  ( Fun 
_I 
<->  ( Rel  _I  /\  (  _I  o.  `'  _I  )  C_  _I  )
)
91, 7, 8mpbir2an 945 1  |-  Fun  _I
Colors of variables: wff set class
Syntax hints:    = wceq 1373    C_ wss 3166    _I cid 4335   `'ccnv 4674    o. ccom 4679   Rel wrel 4680   Fun wfun 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-fun 5273
This theorem is referenced by:  cnvresid  5348  fnresi  5393  fvi  5636  ssdomg  6870  residfi  7042  climshft2  11617
  Copyright terms: Public domain W3C validator