ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemf1 Unicode version

Theorem ennnfonelemf1 12402
Description: Lemma for ennnfone 12409. 
L is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemf1  |-  ( ph  ->  L : dom  L -1-1-> A )
Distinct variable groups:    A, j, x, y    x, F, y, j, k    n, F   
j, G    i, H    j, H, x, y, k   
j, J    x, N, y, k, j    ph, j, x, y, k    k, n, j
Allowed substitution hints:    ph( i, n)    A( i, k, n)    F( i)    G( x, y, i, k, n)    H( n)    J( x, y, i, k, n)    L( x, y, i, j, k, n)    N( i, n)

Proof of Theorem ennnfonelemf1
Dummy variables  q  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . 5  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . 5  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . 5  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . 5  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . 5  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . 5  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . 5  |-  H  =  seq 0 ( G ,  J )
8 ennnfone.l . . . . 5  |-  L  = 
U_ i  e.  NN0  ( H `  i )
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemfun 12401 . . . 4  |-  ( ph  ->  Fun  L )
109funfnd 5243 . . 3  |-  ( ph  ->  L  Fn  dom  L
)
111, 2, 3, 4, 5, 6, 7ennnfonelemh 12388 . . . . . . . . 9  |-  ( ph  ->  H : NN0 --> ( A 
^pm  om ) )
1211ffnd 5362 . . . . . . . 8  |-  ( ph  ->  H  Fn  NN0 )
13 fniunfv 5757 . . . . . . . 8  |-  ( H  Fn  NN0  ->  U_ i  e.  NN0  ( H `  i )  =  U. ran  H )
1412, 13syl 14 . . . . . . 7  |-  ( ph  ->  U_ i  e.  NN0  ( H `  i )  =  U. ran  H
)
158, 14eqtrid 2222 . . . . . 6  |-  ( ph  ->  L  =  U. ran  H )
1615rneqd 4852 . . . . 5  |-  ( ph  ->  ran  L  =  ran  U.
ran  H )
17 rnuni 5036 . . . . 5  |-  ran  U. ran  H  =  U_ x  e.  ran  H ran  x
1816, 17eqtrdi 2226 . . . 4  |-  ( ph  ->  ran  L  =  U_ x  e.  ran  H ran  x )
1911frnd 5371 . . . . . . . . . 10  |-  ( ph  ->  ran  H  C_  ( A  ^pm  om ) )
2019sselda 3155 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ran  H )  ->  x  e.  ( A  ^pm  om )
)
21 elpmi 6661 . . . . . . . . 9  |-  ( x  e.  ( A  ^pm  om )  ->  ( x : dom  x --> A  /\  dom  x  C_  om )
)
2220, 21syl 14 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ran  H )  ->  (
x : dom  x --> A  /\  dom  x  C_  om ) )
2322simpld 112 . . . . . . 7  |-  ( (
ph  /\  x  e.  ran  H )  ->  x : dom  x --> A )
2423frnd 5371 . . . . . 6  |-  ( (
ph  /\  x  e.  ran  H )  ->  ran  x  C_  A )
2524ralrimiva 2550 . . . . 5  |-  ( ph  ->  A. x  e.  ran  H ran  x  C_  A
)
26 iunss 3925 . . . . 5  |-  ( U_ x  e.  ran  H ran  x  C_  A  <->  A. x  e.  ran  H ran  x  C_  A )
2725, 26sylibr 134 . . . 4  |-  ( ph  ->  U_ x  e.  ran  H ran  x  C_  A
)
2818, 27eqsstrd 3191 . . 3  |-  ( ph  ->  ran  L  C_  A
)
29 df-f 5216 . . 3  |-  ( L : dom  L --> A  <->  ( L  Fn  dom  L  /\  ran  L 
C_  A ) )
3010, 28, 29sylanbrc 417 . 2  |-  ( ph  ->  L : dom  L --> A )
3119sselda 3155 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ran  H )  ->  s  e.  ( A  ^pm  om )
)
32 pmfun 6662 . . . . . . . 8  |-  ( s  e.  ( A  ^pm  om )  ->  Fun  s )
3331, 32syl 14 . . . . . . 7  |-  ( (
ph  /\  s  e.  ran  H )  ->  Fun  s )
3411ffund 5365 . . . . . . . . . 10  |-  ( ph  ->  Fun  H )
3534adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ran  H )  ->  Fun  H )
36 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ran  H )  ->  s  e.  ran  H )
37 elrnrexdm 5651 . . . . . . . . 9  |-  ( Fun 
H  ->  ( s  e.  ran  H  ->  E. q  e.  dom  H  s  =  ( H `  q
) ) )
3835, 36, 37sylc 62 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ran  H )  ->  E. q  e.  dom  H  s  =  ( H `  q
) )
391adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  dom  H )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
402adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  dom  H )  ->  F : om -onto-> A )
413adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  dom  H )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
4211fdmd 5368 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  H  =  NN0 )
4342eleq2d 2247 . . . . . . . . . . . . 13  |-  ( ph  ->  ( q  e.  dom  H  <-> 
q  e.  NN0 )
)
4443biimpa 296 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  dom  H )  ->  q  e.  NN0 )
4539, 40, 41, 4, 5, 6, 7, 44ennnfonelemhf1o 12397 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  dom  H )  ->  ( H `  q ) : dom  ( H `  q ) -1-1-onto-> ( F " ( `' N `  q ) ) )
46 f1ocnv 5470 . . . . . . . . . . 11  |-  ( ( H `  q ) : dom  ( H `
 q ) -1-1-onto-> ( F
" ( `' N `  q ) )  ->  `' ( H `  q ) : ( F " ( `' N `  q ) ) -1-1-onto-> dom  ( H `  q ) )
47 f1ofun 5459 . . . . . . . . . . 11  |-  ( `' ( H `  q
) : ( F
" ( `' N `  q ) ) -1-1-onto-> dom  ( H `  q )  ->  Fun  `' ( H `
 q ) )
4845, 46, 473syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  dom  H )  ->  Fun  `' ( H `  q
) )
4948ad2ant2r 509 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  ( q  e.  dom  H  /\  s  =  ( H `  q ) ) )  ->  Fun  `' ( H `  q
) )
50 simprr 531 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  ( q  e.  dom  H  /\  s  =  ( H `  q ) ) )  ->  s  =  ( H `  q ) )
5150cnveqd 4799 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  ( q  e.  dom  H  /\  s  =  ( H `  q ) ) )  ->  `' s  =  `' ( H `  q )
)
5251funeqd 5234 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  ( q  e.  dom  H  /\  s  =  ( H `  q ) ) )  ->  ( Fun  `' s  <->  Fun  `' ( H `
 q ) ) )
5349, 52mpbird 167 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  ( q  e.  dom  H  /\  s  =  ( H `  q ) ) )  ->  Fun  `' s )
5438, 53rexlimddv 2599 . . . . . . 7  |-  ( (
ph  /\  s  e.  ran  H )  ->  Fun  `' s )
551ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
562ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  F : om -onto-> A )
573ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
58 simplr 528 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  s  e.  ran  H )
59 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  t  e.  ran  H )
6055, 56, 57, 4, 5, 6, 7, 58, 59ennnfonelemrnh 12400 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  ( s  C_  t  \/  t  C_  s ) )
6160ralrimiva 2550 . . . . . . 7  |-  ( (
ph  /\  s  e.  ran  H )  ->  A. t  e.  ran  H ( s 
C_  t  \/  t  C_  s ) )
6233, 54, 61jca31 309 . . . . . 6  |-  ( (
ph  /\  s  e.  ran  H )  ->  (
( Fun  s  /\  Fun  `' s )  /\  A. t  e.  ran  H
( s  C_  t  \/  t  C_  s ) ) )
6362ralrimiva 2550 . . . . 5  |-  ( ph  ->  A. s  e.  ran  H ( ( Fun  s  /\  Fun  `' s )  /\  A. t  e. 
ran  H ( s 
C_  t  \/  t  C_  s ) ) )
64 fun11uni 5282 . . . . 5  |-  ( A. s  e.  ran  H ( ( Fun  s  /\  Fun  `' s )  /\  A. t  e.  ran  H
( s  C_  t  \/  t  C_  s ) )  ->  ( Fun  U.
ran  H  /\  Fun  `' U. ran  H ) )
6563, 64syl 14 . . . 4  |-  ( ph  ->  ( Fun  U. ran  H  /\  Fun  `' U. ran  H ) )
6665simprd 114 . . 3  |-  ( ph  ->  Fun  `' U. ran  H )
6715cnveqd 4799 . . . 4  |-  ( ph  ->  `' L  =  `' U. ran  H )
6867funeqd 5234 . . 3  |-  ( ph  ->  ( Fun  `' L  <->  Fun  `' U. ran  H ) )
6966, 68mpbird 167 . 2  |-  ( ph  ->  Fun  `' L )
70 df-f1 5217 . 2  |-  ( L : dom  L -1-1-> A  <->  ( L : dom  L --> A  /\  Fun  `' L
) )
7130, 69, 70sylanbrc 417 1  |-  ( ph  ->  L : dom  L -1-1-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456    u. cun 3127    C_ wss 3129   (/)c0 3422   ifcif 3534   {csn 3591   <.cop 3594   U.cuni 3807   U_ciun 3884    |-> cmpt 4061   suc csuc 4362   omcom 4586   `'ccnv 4622   dom cdm 4623   ran crn 4624   "cima 4626   Fun wfun 5206    Fn wfn 5207   -->wf 5208   -1-1->wf1 5209   -onto->wfo 5210   -1-1-onto->wf1o 5211   ` cfv 5212  (class class class)co 5869    e. cmpo 5871  freccfrec 6385    ^pm cpm 6643   0cc0 7802   1c1 7803    + caddc 7805    - cmin 8118   NN0cn0 9165   ZZcz 9242    seqcseq 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pm 6645  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432
This theorem is referenced by:  ennnfonelemrn  12403  ennnfonelemen  12405
  Copyright terms: Public domain W3C validator