ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemf1 Unicode version

Theorem ennnfonelemf1 12575
Description: Lemma for ennnfone 12582. 
L is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemf1  |-  ( ph  ->  L : dom  L -1-1-> A )
Distinct variable groups:    A, j, x, y    x, F, y, j, k    n, F   
j, G    i, H    j, H, x, y, k   
j, J    x, N, y, k, j    ph, j, x, y, k    k, n, j
Allowed substitution hints:    ph( i, n)    A( i, k, n)    F( i)    G( x, y, i, k, n)    H( n)    J( x, y, i, k, n)    L( x, y, i, j, k, n)    N( i, n)

Proof of Theorem ennnfonelemf1
Dummy variables  q  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . . 5  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . . 5  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . . 5  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . . 5  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . . 5  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . . 5  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . . 5  |-  H  =  seq 0 ( G ,  J )
8 ennnfone.l . . . . 5  |-  L  = 
U_ i  e.  NN0  ( H `  i )
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemfun 12574 . . . 4  |-  ( ph  ->  Fun  L )
109funfnd 5285 . . 3  |-  ( ph  ->  L  Fn  dom  L
)
111, 2, 3, 4, 5, 6, 7ennnfonelemh 12561 . . . . . . . . 9  |-  ( ph  ->  H : NN0 --> ( A 
^pm  om ) )
1211ffnd 5404 . . . . . . . 8  |-  ( ph  ->  H  Fn  NN0 )
13 fniunfv 5805 . . . . . . . 8  |-  ( H  Fn  NN0  ->  U_ i  e.  NN0  ( H `  i )  =  U. ran  H )
1412, 13syl 14 . . . . . . 7  |-  ( ph  ->  U_ i  e.  NN0  ( H `  i )  =  U. ran  H
)
158, 14eqtrid 2238 . . . . . 6  |-  ( ph  ->  L  =  U. ran  H )
1615rneqd 4891 . . . . 5  |-  ( ph  ->  ran  L  =  ran  U.
ran  H )
17 rnuni 5077 . . . . 5  |-  ran  U. ran  H  =  U_ x  e.  ran  H ran  x
1816, 17eqtrdi 2242 . . . 4  |-  ( ph  ->  ran  L  =  U_ x  e.  ran  H ran  x )
1911frnd 5413 . . . . . . . . . 10  |-  ( ph  ->  ran  H  C_  ( A  ^pm  om ) )
2019sselda 3179 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ran  H )  ->  x  e.  ( A  ^pm  om )
)
21 elpmi 6721 . . . . . . . . 9  |-  ( x  e.  ( A  ^pm  om )  ->  ( x : dom  x --> A  /\  dom  x  C_  om )
)
2220, 21syl 14 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ran  H )  ->  (
x : dom  x --> A  /\  dom  x  C_  om ) )
2322simpld 112 . . . . . . 7  |-  ( (
ph  /\  x  e.  ran  H )  ->  x : dom  x --> A )
2423frnd 5413 . . . . . 6  |-  ( (
ph  /\  x  e.  ran  H )  ->  ran  x  C_  A )
2524ralrimiva 2567 . . . . 5  |-  ( ph  ->  A. x  e.  ran  H ran  x  C_  A
)
26 iunss 3953 . . . . 5  |-  ( U_ x  e.  ran  H ran  x  C_  A  <->  A. x  e.  ran  H ran  x  C_  A )
2725, 26sylibr 134 . . . 4  |-  ( ph  ->  U_ x  e.  ran  H ran  x  C_  A
)
2818, 27eqsstrd 3215 . . 3  |-  ( ph  ->  ran  L  C_  A
)
29 df-f 5258 . . 3  |-  ( L : dom  L --> A  <->  ( L  Fn  dom  L  /\  ran  L 
C_  A ) )
3010, 28, 29sylanbrc 417 . 2  |-  ( ph  ->  L : dom  L --> A )
3119sselda 3179 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ran  H )  ->  s  e.  ( A  ^pm  om )
)
32 pmfun 6722 . . . . . . . 8  |-  ( s  e.  ( A  ^pm  om )  ->  Fun  s )
3331, 32syl 14 . . . . . . 7  |-  ( (
ph  /\  s  e.  ran  H )  ->  Fun  s )
3411ffund 5407 . . . . . . . . . 10  |-  ( ph  ->  Fun  H )
3534adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ran  H )  ->  Fun  H )
36 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ran  H )  ->  s  e.  ran  H )
37 elrnrexdm 5697 . . . . . . . . 9  |-  ( Fun 
H  ->  ( s  e.  ran  H  ->  E. q  e.  dom  H  s  =  ( H `  q
) ) )
3835, 36, 37sylc 62 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ran  H )  ->  E. q  e.  dom  H  s  =  ( H `  q
) )
391adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  dom  H )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
402adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  dom  H )  ->  F : om -onto-> A )
413adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  dom  H )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
4211fdmd 5410 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  H  =  NN0 )
4342eleq2d 2263 . . . . . . . . . . . . 13  |-  ( ph  ->  ( q  e.  dom  H  <-> 
q  e.  NN0 )
)
4443biimpa 296 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  dom  H )  ->  q  e.  NN0 )
4539, 40, 41, 4, 5, 6, 7, 44ennnfonelemhf1o 12570 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  dom  H )  ->  ( H `  q ) : dom  ( H `  q ) -1-1-onto-> ( F " ( `' N `  q ) ) )
46 f1ocnv 5513 . . . . . . . . . . 11  |-  ( ( H `  q ) : dom  ( H `
 q ) -1-1-onto-> ( F
" ( `' N `  q ) )  ->  `' ( H `  q ) : ( F " ( `' N `  q ) ) -1-1-onto-> dom  ( H `  q ) )
47 f1ofun 5502 . . . . . . . . . . 11  |-  ( `' ( H `  q
) : ( F
" ( `' N `  q ) ) -1-1-onto-> dom  ( H `  q )  ->  Fun  `' ( H `
 q ) )
4845, 46, 473syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  dom  H )  ->  Fun  `' ( H `  q
) )
4948ad2ant2r 509 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  ( q  e.  dom  H  /\  s  =  ( H `  q ) ) )  ->  Fun  `' ( H `  q
) )
50 simprr 531 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  ( q  e.  dom  H  /\  s  =  ( H `  q ) ) )  ->  s  =  ( H `  q ) )
5150cnveqd 4838 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  ( q  e.  dom  H  /\  s  =  ( H `  q ) ) )  ->  `' s  =  `' ( H `  q )
)
5251funeqd 5276 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  ( q  e.  dom  H  /\  s  =  ( H `  q ) ) )  ->  ( Fun  `' s  <->  Fun  `' ( H `
 q ) ) )
5349, 52mpbird 167 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  ( q  e.  dom  H  /\  s  =  ( H `  q ) ) )  ->  Fun  `' s )
5438, 53rexlimddv 2616 . . . . . . 7  |-  ( (
ph  /\  s  e.  ran  H )  ->  Fun  `' s )
551ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
562ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  F : om -onto-> A )
573ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
58 simplr 528 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  s  e.  ran  H )
59 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  t  e.  ran  H )
6055, 56, 57, 4, 5, 6, 7, 58, 59ennnfonelemrnh 12573 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ran  H )  /\  t  e.  ran  H )  ->  ( s  C_  t  \/  t  C_  s ) )
6160ralrimiva 2567 . . . . . . 7  |-  ( (
ph  /\  s  e.  ran  H )  ->  A. t  e.  ran  H ( s 
C_  t  \/  t  C_  s ) )
6233, 54, 61jca31 309 . . . . . 6  |-  ( (
ph  /\  s  e.  ran  H )  ->  (
( Fun  s  /\  Fun  `' s )  /\  A. t  e.  ran  H
( s  C_  t  \/  t  C_  s ) ) )
6362ralrimiva 2567 . . . . 5  |-  ( ph  ->  A. s  e.  ran  H ( ( Fun  s  /\  Fun  `' s )  /\  A. t  e. 
ran  H ( s 
C_  t  \/  t  C_  s ) ) )
64 fun11uni 5324 . . . . 5  |-  ( A. s  e.  ran  H ( ( Fun  s  /\  Fun  `' s )  /\  A. t  e.  ran  H
( s  C_  t  \/  t  C_  s ) )  ->  ( Fun  U.
ran  H  /\  Fun  `' U. ran  H ) )
6563, 64syl 14 . . . 4  |-  ( ph  ->  ( Fun  U. ran  H  /\  Fun  `' U. ran  H ) )
6665simprd 114 . . 3  |-  ( ph  ->  Fun  `' U. ran  H )
6715cnveqd 4838 . . . 4  |-  ( ph  ->  `' L  =  `' U. ran  H )
6867funeqd 5276 . . 3  |-  ( ph  ->  ( Fun  `' L  <->  Fun  `' U. ran  H ) )
6966, 68mpbird 167 . 2  |-  ( ph  ->  Fun  `' L )
70 df-f1 5259 . 2  |-  ( L : dom  L -1-1-> A  <->  ( L : dom  L --> A  /\  Fun  `' L
) )
7130, 69, 70sylanbrc 417 1  |-  ( ph  ->  L : dom  L -1-1-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   E.wrex 2473    u. cun 3151    C_ wss 3153   (/)c0 3446   ifcif 3557   {csn 3618   <.cop 3621   U.cuni 3835   U_ciun 3912    |-> cmpt 4090   suc csuc 4396   omcom 4622   `'ccnv 4658   dom cdm 4659   ran crn 4660   "cima 4662   Fun wfun 5248    Fn wfn 5249   -->wf 5250   -1-1->wf1 5251   -onto->wfo 5252   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918    e. cmpo 5920  freccfrec 6443    ^pm cpm 6703   0cc0 7872   1c1 7873    + caddc 7875    - cmin 8190   NN0cn0 9240   ZZcz 9317    seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pm 6705  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519
This theorem is referenced by:  ennnfonelemrn  12576  ennnfonelemen  12578
  Copyright terms: Public domain W3C validator