| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemf1 | Unicode version | ||
| Description: Lemma for ennnfone 12911. |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq |
|
| ennnfonelemh.f |
|
| ennnfonelemh.ne |
|
| ennnfonelemh.g |
|
| ennnfonelemh.n |
|
| ennnfonelemh.j |
|
| ennnfonelemh.h |
|
| ennnfone.l |
|
| Ref | Expression |
|---|---|
| ennnfonelemf1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemh.dceq |
. . . . 5
| |
| 2 | ennnfonelemh.f |
. . . . 5
| |
| 3 | ennnfonelemh.ne |
. . . . 5
| |
| 4 | ennnfonelemh.g |
. . . . 5
| |
| 5 | ennnfonelemh.n |
. . . . 5
| |
| 6 | ennnfonelemh.j |
. . . . 5
| |
| 7 | ennnfonelemh.h |
. . . . 5
| |
| 8 | ennnfone.l |
. . . . 5
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemfun 12903 |
. . . 4
|
| 10 | 9 | funfnd 5321 |
. . 3
|
| 11 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelemh 12890 |
. . . . . . . . 9
|
| 12 | 11 | ffnd 5446 |
. . . . . . . 8
|
| 13 | fniunfv 5854 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | 8, 14 | eqtrid 2252 |
. . . . . 6
|
| 16 | 15 | rneqd 4926 |
. . . . 5
|
| 17 | rnuni 5113 |
. . . . 5
| |
| 18 | 16, 17 | eqtrdi 2256 |
. . . 4
|
| 19 | 11 | frnd 5455 |
. . . . . . . . . 10
|
| 20 | 19 | sselda 3201 |
. . . . . . . . 9
|
| 21 | elpmi 6777 |
. . . . . . . . 9
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . 8
|
| 23 | 22 | simpld 112 |
. . . . . . 7
|
| 24 | 23 | frnd 5455 |
. . . . . 6
|
| 25 | 24 | ralrimiva 2581 |
. . . . 5
|
| 26 | iunss 3982 |
. . . . 5
| |
| 27 | 25, 26 | sylibr 134 |
. . . 4
|
| 28 | 18, 27 | eqsstrd 3237 |
. . 3
|
| 29 | df-f 5294 |
. . 3
| |
| 30 | 10, 28, 29 | sylanbrc 417 |
. 2
|
| 31 | 19 | sselda 3201 |
. . . . . . . 8
|
| 32 | pmfun 6778 |
. . . . . . . 8
| |
| 33 | 31, 32 | syl 14 |
. . . . . . 7
|
| 34 | 11 | ffund 5449 |
. . . . . . . . . 10
|
| 35 | 34 | adantr 276 |
. . . . . . . . 9
|
| 36 | simpr 110 |
. . . . . . . . 9
| |
| 37 | elrnrexdm 5742 |
. . . . . . . . 9
| |
| 38 | 35, 36, 37 | sylc 62 |
. . . . . . . 8
|
| 39 | 1 | adantr 276 |
. . . . . . . . . . . 12
|
| 40 | 2 | adantr 276 |
. . . . . . . . . . . 12
|
| 41 | 3 | adantr 276 |
. . . . . . . . . . . 12
|
| 42 | 11 | fdmd 5452 |
. . . . . . . . . . . . . 14
|
| 43 | 42 | eleq2d 2277 |
. . . . . . . . . . . . 13
|
| 44 | 43 | biimpa 296 |
. . . . . . . . . . . 12
|
| 45 | 39, 40, 41, 4, 5, 6, 7, 44 | ennnfonelemhf1o 12899 |
. . . . . . . . . . 11
|
| 46 | f1ocnv 5557 |
. . . . . . . . . . 11
| |
| 47 | f1ofun 5546 |
. . . . . . . . . . 11
| |
| 48 | 45, 46, 47 | 3syl 17 |
. . . . . . . . . 10
|
| 49 | 48 | ad2ant2r 509 |
. . . . . . . . 9
|
| 50 | simprr 531 |
. . . . . . . . . . 11
| |
| 51 | 50 | cnveqd 4872 |
. . . . . . . . . 10
|
| 52 | 51 | funeqd 5312 |
. . . . . . . . 9
|
| 53 | 49, 52 | mpbird 167 |
. . . . . . . 8
|
| 54 | 38, 53 | rexlimddv 2630 |
. . . . . . 7
|
| 55 | 1 | ad2antrr 488 |
. . . . . . . . 9
|
| 56 | 2 | ad2antrr 488 |
. . . . . . . . 9
|
| 57 | 3 | ad2antrr 488 |
. . . . . . . . 9
|
| 58 | simplr 528 |
. . . . . . . . 9
| |
| 59 | simpr 110 |
. . . . . . . . 9
| |
| 60 | 55, 56, 57, 4, 5, 6, 7, 58, 59 | ennnfonelemrnh 12902 |
. . . . . . . 8
|
| 61 | 60 | ralrimiva 2581 |
. . . . . . 7
|
| 62 | 33, 54, 61 | jca31 309 |
. . . . . 6
|
| 63 | 62 | ralrimiva 2581 |
. . . . 5
|
| 64 | fun11uni 5363 |
. . . . 5
| |
| 65 | 63, 64 | syl 14 |
. . . 4
|
| 66 | 65 | simprd 114 |
. . 3
|
| 67 | 15 | cnveqd 4872 |
. . . 4
|
| 68 | 67 | funeqd 5312 |
. . 3
|
| 69 | 66, 68 | mpbird 167 |
. 2
|
| 70 | df-f1 5295 |
. 2
| |
| 71 | 30, 69, 70 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pm 6761 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 |
| This theorem is referenced by: ennnfonelemrn 12905 ennnfonelemen 12907 |
| Copyright terms: Public domain | W3C validator |