ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfnd GIF version

Theorem funfnd 5229
Description: A function is a function over its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
funfnd.1 (𝜑 → Fun 𝐴)
Assertion
Ref Expression
funfnd (𝜑𝐴 Fn dom 𝐴)

Proof of Theorem funfnd
StepHypRef Expression
1 funfnd.1 . 2 (𝜑 → Fun 𝐴)
2 funfn 5228 . 2 (Fun 𝐴𝐴 Fn dom 𝐴)
31, 2sylib 121 1 (𝜑𝐴 Fn dom 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  dom cdm 4611  Fun wfun 5192   Fn wfn 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-fn 5201
This theorem is referenced by:  ennnfonelemf1  12373  dvfgg  13451
  Copyright terms: Public domain W3C validator