HomeHome Intuitionistic Logic Explorer
Theorem List (p. 53 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5201-5300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremunixpm 5201* The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.)
 |-  ( E. x  x  e.  ( A  X.  B )  ->  U. U. ( A  X.  B )  =  ( A  u.  B ) )
 
Theoremunixp0im 5202 The union of an empty cross product is empty. (Contributed by Jim Kingdon, 18-Dec-2018.)
 |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  =  (/) )
 
Theoremcnvexg 5203 The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.)
 |-  ( A  e.  V  ->  `' A  e.  _V )
 
Theoremcnvex 5204 The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.)
 |-  A  e.  _V   =>    |-  `' A  e.  _V
 
Theoremrelcnvexb 5205 A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.)
 |-  ( Rel  R  ->  ( R  e.  _V  <->  `' R  e.  _V ) )
 
Theoremressn 5206 Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  ( A  |`  { B } )  =  ( { B }  X.  ( A " { B }
 ) )
 
Theoremcnviinm 5207* The converse of an intersection is the intersection of the converse. (Contributed by Jim Kingdon, 18-Dec-2018.)
 |-  ( E. y  y  e.  A  ->  `' |^|_ x  e.  A  B  =  |^|_
 x  e.  A  `' B )
 
Theoremcnvpom 5208* The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.)
 |-  ( E. x  x  e.  A  ->  ( R  Po  A  <->  `' R  Po  A ) )
 
Theoremcnvsom 5209* The converse of a strict order relation is a strict order relation. (Contributed by Jim Kingdon, 19-Dec-2018.)
 |-  ( E. x  x  e.  A  ->  ( R  Or  A  <->  `' R  Or  A ) )
 
Theoremcoexg 5210 The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  o.  B )  e.  _V )
 
Theoremcoex 5211 The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  o.  B )  e.  _V
 
Theoremxpcom 5212* Composition of two cross products. (Contributed by Jim Kingdon, 20-Dec-2018.)
 |-  ( E. x  x  e.  B  ->  (
 ( B  X.  C )  o.  ( A  X.  B ) )  =  ( A  X.  C ) )
 
2.6.7  Definite description binder (inverted iota)
 
Syntaxcio 5213 Extend class notation with Russell's definition description binder (inverted iota).
 class  ( iota x ph )
 
Theoremiotajust 5214* Soundness justification theorem for df-iota 5215. (Contributed by Andrew Salmon, 29-Jun-2011.)
 |- 
 U. { y  |  { x  |  ph }  =  { y } }  =  U. { z  |  { x  |  ph }  =  { z } }
 
Definitiondf-iota 5215* Define Russell's definition description binder, which can be read as "the unique  x such that  ph," where  ph ordinarily contains  x as a free variable. Our definition is meaningful only when there is exactly one  x such that  ph is true (see iotaval 5226); otherwise, it evaluates to the empty set (see iotanul 5230). Russell used the inverted iota symbol 
iota to represent the binder.

Sometimes proofs need to expand an iota-based definition. That is, given "X = the x for which ... x ... x ..." holds, the proof needs to get to "... X ... X ...". A general strategy to do this is to use iotacl 5239 (for unbounded iota). This can be easier than applying a version that applies an explicit substitution, because substituting an iota into its own property always has a bound variable clash which must be first renamed or else guarded with NF.

(Contributed by Andrew Salmon, 30-Jun-2011.)

 |-  ( iota x ph )  =  U. { y  |  { x  |  ph }  =  { y } }
 
Theoremdfiota2 5216* Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.)
 |-  ( iota x ph )  =  U. { y  |  A. x ( ph  <->  x  =  y ) }
 
Theoremnfiota1 5217 Bound-variable hypothesis builder for the  iota class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x ( iota x ph )
 
Theoremnfiotadw 5218* Bound-variable hypothesis builder for the  iota class. (Contributed by Jim Kingdon, 21-Dec-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/_ x ( iota y ps ) )
 
Theoremnfiotaw 5219* Bound-variable hypothesis builder for the  iota class. (Contributed by NM, 23-Aug-2011.)
 |- 
 F/ x ph   =>    |-  F/_ x ( iota y ph )
 
Theoremcbviota 5220 Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  F/ y ph   &    |-  F/ x ps   =>    |-  ( iota x ph )  =  ( iota y ps )
 
Theoremcbviotav 5221* Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( iota x ph )  =  ( iota
 y ps )
 
Theoremsb8iota 5222 Variable substitution in description binder. Compare sb8eu 2055. (Contributed by NM, 18-Mar-2013.)
 |- 
 F/ y ph   =>    |-  ( iota x ph )  =  ( iota y [ y  /  x ] ph )
 
Theoremiotaeq 5223 Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
 |-  ( A. x  x  =  y  ->  ( iota x ph )  =  ( iota y ph ) )
 
Theoremiotabi 5224 Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
 |-  ( A. x (
 ph 
 <->  ps )  ->  ( iota x ph )  =  ( iota x ps ) )
 
Theoremuniabio 5225* Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
 |-  ( A. x (
 ph 
 <->  x  =  y ) 
 ->  U. { x  |  ph
 }  =  y )
 
Theoremiotaval 5226* Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
 |-  ( A. x (
 ph 
 <->  x  =  y ) 
 ->  ( iota x ph )  =  y )
 
Theoremiotauni 5227 Equivalence between two different forms of  iota. (Contributed by Andrew Salmon, 12-Jul-2011.)
 |-  ( E! x ph  ->  ( iota x ph )  =  U. { x  |  ph } )
 
Theoremiotaint 5228 Equivalence between two different forms of  iota. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( E! x ph  ->  ( iota x ph )  =  |^| { x  |  ph } )
 
Theoremiota1 5229 Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
 |-  ( E! x ph  ->  ( ph  <->  ( iota x ph )  =  x ) )
 
Theoremiotanul 5230 Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one  x that satisfies  ph. (Contributed by Andrew Salmon, 11-Jul-2011.)
 |-  ( -.  E! x ph 
 ->  ( iota x ph )  =  (/) )
 
Theoremeuiotaex 5231 Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the  iota class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.)
 |-  ( E! x ph  ->  ( iota x ph )  e.  _V )
 
Theoremiotass 5232* Value of iota based on a proposition which holds only for values which are subsets of a given class. (Contributed by Mario Carneiro and Jim Kingdon, 21-Dec-2018.)
 |-  ( A. x (
 ph  ->  x  C_  A )  ->  ( iota x ph )  C_  A )
 
Theoremiotaexab 5233 Existence of the  iota class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.)
 |-  ( { x  |  ph
 }  e.  V  ->  (
 iota x ph )  e. 
 _V )
 
Theoremiota4 5234 Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
 |-  ( E! x ph  -> 
 [. ( iota x ph )  /  x ]. ph )
 
Theoremiota4an 5235 Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
 |-  ( E! x (
 ph  /\  ps )  -> 
 [. ( iota x ( ph  /\  ps )
 )  /  x ]. ph )
 
Theoremiota5 5236* A method for computing iota. (Contributed by NM, 17-Sep-2013.)
 |-  ( ( ph  /\  A  e.  V )  ->  ( ps 
 <->  x  =  A ) )   =>    |-  ( ( ph  /\  A  e.  V )  ->  ( iota x ps )  =  A )
 
Theoremiotabidv 5237* Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 iota x ps )  =  ( iota x ch ) )
 
Theoremiotabii 5238 Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  ( ph  <->  ps )   =>    |-  ( iota x ph )  =  ( iota x ps )
 
Theoremiotacl 5239 Membership law for descriptions.

This can useful for expanding an unbounded iota-based definition (see df-iota 5215).

(Contributed by Andrew Salmon, 1-Aug-2011.)

 |-  ( E! x ph  ->  ( iota x ph )  e.  { x  |  ph } )
 
Theoremiota2df 5240 A condition that allows us to represent "the unique element such that  ph " with a class expression  A. (Contributed by NM, 30-Dec-2014.)
 |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  E! x ps )   &    |-  (
 ( ph  /\  x  =  B )  ->  ( ps 
 <->  ch ) )   &    |-  F/ x ph   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  ( ch  <->  ( iota x ps )  =  B ) )
 
Theoremiota2d 5241* A condition that allows us to represent "the unique element such that  ph " with a class expression  A. (Contributed by NM, 30-Dec-2014.)
 |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  E! x ps )   &    |-  (
 ( ph  /\  x  =  B )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ch  <->  ( iota x ps )  =  B ) )
 
Theoremeliota 5242* An element of an iota expression. (Contributed by Jim Kingdon, 22-Nov-2024.)
 |-  ( A  e.  ( iota x ph )  <->  E. y ( A  e.  y  /\  A. x ( ph  <->  x  =  y
 ) ) )
 
Theoremeliotaeu 5243 An inhabited iota expression has a unique value. (Contributed by Jim Kingdon, 22-Nov-2024.)
 |-  ( A  e.  ( iota x ph )  ->  E! x ph )
 
Theoremiota2 5244* The unique element such that 
ph. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  B  /\  E! x ph )  ->  ( ps 
 <->  ( iota x ph )  =  A )
 )
 
Theoremsniota 5245 A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  ( E! x ph  ->  { x  |  ph }  =  { ( iota
 x ph ) } )
 
Theoremiotam 5246* Representation of "the unique element such that  ph " with a class expression  A which is inhabited (that means that "the unique element such that  ph " exists). (Contributed by AV, 30-Jan-2024.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  V  /\  E. w  w  e.  A  /\  A  =  ( iota
 x ph ) )  ->  ps )
 
Theoremcsbiotag 5247* Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( iota y ph )  =  ( iota y [. A  /  x ].
 ph ) )
 
2.6.8  Functions
 
Syntaxwfun 5248 Extend the definition of a wff to include the function predicate. (Read:  A is a function.)
 wff  Fun  A
 
Syntaxwfn 5249 Extend the definition of a wff to include the function predicate with a domain. (Read:  A is a function on  B.)
 wff  A  Fn  B
 
Syntaxwf 5250 Extend the definition of a wff to include the function predicate with domain and codomain. (Read: 
F maps  A into  B.)
 wff  F : A --> B
 
Syntaxwf1 5251 Extend the definition of a wff to include one-to-one functions. (Read:  F maps  A one-to-one into  B.) The notation ("1-1" above the arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27.
 wff  F : A -1-1-> B
 
Syntaxwfo 5252 Extend the definition of a wff to include onto functions. (Read:  F maps  A onto  B.) The notation ("onto" below the arrow) is from Definition 6.15(4) of [TakeutiZaring] p. 27.
 wff  F : A -onto-> B
 
Syntaxwf1o 5253 Extend the definition of a wff to include one-to-one onto functions. (Read:  F maps  A one-to-one onto  B.) The notation ("1-1" above the arrow and "onto" below the arrow) is from Definition 6.15(6) of [TakeutiZaring] p. 27.
 wff  F : A -1-1-onto-> B
 
Syntaxcfv 5254 Extend the definition of a class to include the value of a function. (Read: The value of  F at  A, or " F of  A.")
 class  ( F `  A )
 
Syntaxwiso 5255 Extend the definition of a wff to include the isomorphism property. (Read:  H is an  R,  S isomorphism of  A onto  B.)
 wff  H  Isom  R ,  S  ( A ,  B )
 
Definitiondf-fun 5256 Define predicate that determines if some class  A is a function. Definition 10.1 of [Quine] p. 65. For example, the expression  Fun  _I is true (funi 5286). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 4090 with the maps-to notation (see df-mpt 4092). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 5257), a function with a given domain and codomain (df-f 5258), a one-to-one function (df-f1 5259), an onto function (df-fo 5260), or a one-to-one onto function (df-f1o 5261). For alternate definitions, see dffun2 5264, dffun4 5265, dffun6 5268, dffun7 5281, dffun8 5282, and dffun9 5283. (Contributed by NM, 1-Aug-1994.)
 |-  ( Fun  A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  )
 )
 
Definitiondf-fn 5257 Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
 
Definitiondf-f 5258 Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  ran  F  C_  B ) )
 
Definitiondf-f1 5259 Define a one-to-one function. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow). (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A -1-1-> B  <-> 
 ( F : A --> B  /\  Fun  `' F ) )
 
Definitiondf-fo 5260 Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A -onto-> B 
 <->  ( F  Fn  A  /\  ran  F  =  B ) )
 
Definitiondf-f1o 5261 Define a one-to-one onto function. Compare Definition 6.15(6) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow and "onto" below the arrow). (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
 
Definitiondf-fv 5262* Define the value of a function,  ( F `  A
), also known as function application. For example,  (  _I  `  (/) )  =  (/). Typically, function  F is defined using maps-to notation (see df-mpt 4092), but this is not required. For example,  F  =  { <. 2 ,  6 >. ,  <. 3 ,  9
>. }  ->  ( F `  3 )  =  9. We will later define two-argument functions using ordered pairs as  ( A F B )  =  ( F `  <. A ,  B >. ). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful. The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar  F ( A ) notation for a function's value at  A, i.e., " F of  A," but without context-dependent notational ambiguity. (Contributed by NM, 1-Aug-1994.) Revised to use  iota. (Revised by Scott Fenton, 6-Oct-2017.)
 |-  ( F `  A )  =  ( iota x A F x )
 
Definitiondf-isom 5263* Define the isomorphism predicate. We read this as " H is an  R,  S isomorphism of  A onto  B". Normally,  R and  S are ordering relations on  A and  B respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that  R and  S are subscripts. (Contributed by NM, 4-Mar-1997.)
 |-  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
 
Theoremdffun2 5264* Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z )
 ) )
 
Theoremdffun4 5265* Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <. x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A )  ->  y  =  z )
 ) )
 
Theoremdffun5r 5266* A way of proving a relation is a function, analogous to mo2r 2094. (Contributed by Jim Kingdon, 27-May-2020.)
 |-  ( ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) 
 ->  Fun  A )
 
Theoremdffun6f 5267* Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   =>    |-  ( Fun  A  <->  ( Rel  A  /\  A. x E* y  x A y ) )
 
Theoremdffun6 5268* Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
 |-  ( Fun  F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
 
Theoremfunmo 5269* A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
 |-  ( Fun  F  ->  E* y  A F y )
 
Theoremdffun4f 5270* Definition of function like dffun4 5265 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ z A   =>    |-  ( Fun  A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <. x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A )  ->  y  =  z )
 ) )
 
Theoremfunrel 5271 A function is a relation. (Contributed by NM, 1-Aug-1994.)
 |-  ( Fun  A  ->  Rel 
 A )
 
Theorem0nelfun 5272 A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.)
 |-  ( Fun  R  ->  (/)  e/  R )
 
Theoremfunss 5273 Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
 |-  ( A  C_  B  ->  ( Fun  B  ->  Fun 
 A ) )
 
Theoremfuneq 5274 Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
 |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
 
Theoremfuneqi 5275 Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  A  =  B   =>    |-  ( Fun  A  <->  Fun 
 B )
 
Theoremfuneqd 5276 Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( Fun  A  <->  Fun  B ) )
 
Theoremnffun 5277 Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
 |-  F/_ x F   =>    |- 
 F/ x Fun  F
 
Theoremsbcfung 5278 Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )
 
Theoremfuneu 5279* There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( Fun  F  /\  A F B ) 
 ->  E! y  A F y )
 
Theoremfuneu2 5280* There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.)
 |-  ( ( Fun  F  /\  <. A ,  B >.  e.  F )  ->  E! y <. A ,  y >.  e.  F )
 
Theoremdffun7 5281* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one". However, dffun8 5282 shows that it does not matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
 
Theoremdffun8 5282* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 5281. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
 
Theoremdffun9 5283* Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
 
Theoremfunfn 5284 An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
 |-  ( Fun  A  <->  A  Fn  dom  A )
 
Theoremfunfnd 5285 A function is a function over its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  Fun  A )   =>    |-  ( ph  ->  A  Fn  dom  A )
 
Theoremfuni 5286 The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.)
 |- 
 Fun  _I
 
Theoremnfunv 5287 The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.)
 |- 
 -.  Fun  _V
 
Theoremfunopg 5288 A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  Fun  <. A ,  B >. )  ->  A  =  B )
 
Theoremfunopab 5289* A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
 |-  ( Fun  { <. x ,  y >.  |  ph }  <->  A. x E* y ph )
 
Theoremfunopabeq 5290* A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.)
 |- 
 Fun  { <. x ,  y >.  |  y  =  A }
 
Theoremfunopab4 5291* A class of ordered pairs of values in the form used by df-mpt 4092 is a function. (Contributed by NM, 17-Feb-2013.)
 |- 
 Fun  { <. x ,  y >.  |  ( ph  /\  y  =  A ) }
 
Theoremfunmpt 5292 A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
 |- 
 Fun  ( x  e.  A  |->  B )
 
Theoremfunmpt2 5293 Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  Fun 
 F
 
Theoremfunco 5294 The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
 
Theoremfunres 5295 A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.)
 |-  ( Fun  F  ->  Fun  ( F  |`  A ) )
 
Theoremfunssres 5296 The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
 |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
 
Theoremfun2ssres 5297 Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
 |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )
 
Theoremfunun 5298 The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( Fun 
 F  /\  Fun  G ) 
 /\  ( dom  F  i^i  dom  G )  =  (/) )  ->  Fun  ( F  u.  G ) )
 
Theoremfuncnvsn 5299 The converse singleton of an ordered pair is a function. This is equivalent to funsn 5302 via cnvsn 5148, but stating it this way allows us to skip the sethood assumptions on  A and  B. (Contributed by NM, 30-Apr-2015.)
 |- 
 Fun  `' { <. A ,  B >. }
 
Theoremfunsng 5300 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >