HomeHome Intuitionistic Logic Explorer
Theorem List (p. 53 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5201-5300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-fn 5201 Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
 
Definitiondf-f 5202 Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  ran  F  C_  B ) )
 
Definitiondf-f1 5203 Define a one-to-one function. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow). (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A -1-1-> B  <-> 
 ( F : A --> B  /\  Fun  `' F ) )
 
Definitiondf-fo 5204 Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A -onto-> B 
 <->  ( F  Fn  A  /\  ran  F  =  B ) )
 
Definitiondf-f1o 5205 Define a one-to-one onto function. Compare Definition 6.15(6) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow and "onto" below the arrow). (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
 
Definitiondf-fv 5206* Define the value of a function,  ( F `  A
), also known as function application. For example,  (  _I  `  (/) )  =  (/). Typically, function  F is defined using maps-to notation (see df-mpt 4052), but this is not required. For example,  F  =  { <. 2 ,  6 >. ,  <. 3 ,  9
>. }  ->  ( F `  3 )  =  9. We will later define two-argument functions using ordered pairs as  ( A F B )  =  ( F `  <. A ,  B >. ). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful. The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar  F ( A ) notation for a function's value at  A, i.e., " F of  A," but without context-dependent notational ambiguity. (Contributed by NM, 1-Aug-1994.) Revised to use  iota. (Revised by Scott Fenton, 6-Oct-2017.)
 |-  ( F `  A )  =  ( iota x A F x )
 
Definitiondf-isom 5207* Define the isomorphism predicate. We read this as " H is an  R,  S isomorphism of  A onto  B". Normally,  R and  S are ordering relations on  A and  B respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that  R and  S are subscripts. (Contributed by NM, 4-Mar-1997.)
 |-  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
 
Theoremdffun2 5208* Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z )
 ) )
 
Theoremdffun4 5209* Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <. x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A )  ->  y  =  z )
 ) )
 
Theoremdffun5r 5210* A way of proving a relation is a function, analogous to mo2r 2071. (Contributed by Jim Kingdon, 27-May-2020.)
 |-  ( ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) 
 ->  Fun  A )
 
Theoremdffun6f 5211* Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   =>    |-  ( Fun  A  <->  ( Rel  A  /\  A. x E* y  x A y ) )
 
Theoremdffun6 5212* Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
 |-  ( Fun  F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
 
Theoremfunmo 5213* A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
 |-  ( Fun  F  ->  E* y  A F y )
 
Theoremdffun4f 5214* Definition of function like dffun4 5209 but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Jim Kingdon, 17-Mar-2019.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ z A   =>    |-  ( Fun  A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <. x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A )  ->  y  =  z )
 ) )
 
Theoremfunrel 5215 A function is a relation. (Contributed by NM, 1-Aug-1994.)
 |-  ( Fun  A  ->  Rel 
 A )
 
Theorem0nelfun 5216 A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.)
 |-  ( Fun  R  ->  (/)  e/  R )
 
Theoremfunss 5217 Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
 |-  ( A  C_  B  ->  ( Fun  B  ->  Fun 
 A ) )
 
Theoremfuneq 5218 Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
 |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
 
Theoremfuneqi 5219 Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  A  =  B   =>    |-  ( Fun  A  <->  Fun 
 B )
 
Theoremfuneqd 5220 Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( Fun  A  <->  Fun  B ) )
 
Theoremnffun 5221 Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
 |-  F/_ x F   =>    |- 
 F/ x Fun  F
 
Theoremsbcfung 5222 Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )
 
Theoremfuneu 5223* There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( Fun  F  /\  A F B ) 
 ->  E! y  A F y )
 
Theoremfuneu2 5224* There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.)
 |-  ( ( Fun  F  /\  <. A ,  B >.  e.  F )  ->  E! y <. A ,  y >.  e.  F )
 
Theoremdffun7 5225* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one". However, dffun8 5226 shows that it does not matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
 
Theoremdffun8 5226* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 5225. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
 
Theoremdffun9 5227* Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
 
Theoremfunfn 5228 An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
 |-  ( Fun  A  <->  A  Fn  dom  A )
 
Theoremfunfnd 5229 A function is a function over its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  Fun  A )   =>    |-  ( ph  ->  A  Fn  dom  A )
 
Theoremfuni 5230 The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.)
 |- 
 Fun  _I
 
Theoremnfunv 5231 The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.)
 |- 
 -.  Fun  _V
 
Theoremfunopg 5232 A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  Fun  <. A ,  B >. )  ->  A  =  B )
 
Theoremfunopab 5233* A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
 |-  ( Fun  { <. x ,  y >.  |  ph }  <->  A. x E* y ph )
 
Theoremfunopabeq 5234* A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.)
 |- 
 Fun  { <. x ,  y >.  |  y  =  A }
 
Theoremfunopab4 5235* A class of ordered pairs of values in the form used by df-mpt 4052 is a function. (Contributed by NM, 17-Feb-2013.)
 |- 
 Fun  { <. x ,  y >.  |  ( ph  /\  y  =  A ) }
 
Theoremfunmpt 5236 A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
 |- 
 Fun  ( x  e.  A  |->  B )
 
Theoremfunmpt2 5237 Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  Fun 
 F
 
Theoremfunco 5238 The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
 
Theoremfunres 5239 A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.)
 |-  ( Fun  F  ->  Fun  ( F  |`  A ) )
 
Theoremfunssres 5240 The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
 |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
 
Theoremfun2ssres 5241 Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
 |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )
 
Theoremfunun 5242 The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( Fun 
 F  /\  Fun  G ) 
 /\  ( dom  F  i^i  dom  G )  =  (/) )  ->  Fun  ( F  u.  G ) )
 
Theoremfuncnvsn 5243 The converse singleton of an ordered pair is a function. This is equivalent to funsn 5246 via cnvsn 5093, but stating it this way allows us to skip the sethood assumptions on  A and  B. (Contributed by NM, 30-Apr-2015.)
 |- 
 Fun  `' { <. A ,  B >. }
 
Theoremfunsng 5244 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )
 
Theoremfnsng 5245 Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  Fn  { A } )
 
Theoremfunsn 5246 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 Fun  { <. A ,  B >. }
 
Theoremfuninsn 5247 A function based on the singleton of an ordered pair. Unlike funsng 5244, this holds even if  A or  B is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.)
 |- 
 Fun  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )
 
Theoremfunprg 5248 A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.)
 |-  ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B ) 
 ->  Fun  { <. A ,  C >. ,  <. B ,  D >. } )
 
Theoremfuntpg 5249 A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
 |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )
 
Theoremfunpr 5250 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( A  =/=  B  ->  Fun  { <. A ,  C >. ,  <. B ,  D >. } )
 
Theoremfuntp 5251 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  A  =/=  C  /\  B  =/=  C ) 
 ->  Fun  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } )
 
Theoremfnsn 5252 Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { <. A ,  B >. }  Fn  { A }
 
Theoremfnprg 5253 Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B ) 
 ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B } )
 
Theoremfntpg 5254 Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
 |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  Fn  { X ,  Y ,  Z } )
 
Theoremfntp 5255 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  A  =/=  C  /\  B  =/=  C ) 
 ->  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  Fn  { A ,  B ,  C }
 )
 
Theoremfun0 5256 The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.)
 |- 
 Fun  (/)
 
Theoremfuncnvcnv 5257 The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
 |-  ( Fun  A  ->  Fun  `' `' A )
 
Theoremfuncnv2 5258* A simpler equivalence for single-rooted (see funcnv 5259). (Contributed by NM, 9-Aug-2004.)
 |-  ( Fun  `' A  <->  A. y E* x  x A y )
 
Theoremfuncnv 5259* The converse of a class is a function iff the class is single-rooted, which means that for any  y in the range of  A there is at most one  x such that  x A
y. Definition of single-rooted in [Enderton] p. 43. See funcnv2 5258 for a simpler version. (Contributed by NM, 13-Aug-2004.)
 |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
 
Theoremfuncnv3 5260* A condition showing a class is single-rooted. (See funcnv 5259). (Contributed by NM, 26-May-2006.)
 |-  ( Fun  `' A  <->  A. y  e.  ran  A E! x  e.  dom  A  x A y )
 
Theoremfuncnveq 5261* Another way of expressing that a class is single-rooted. Counterpart to dffun2 5208. (Contributed by Jim Kingdon, 24-Dec-2018.)
 |-  ( Fun  `' A  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
 )
 
Theoremfun2cnv 5262* The double converse of a class is a function iff the class is single-valued. Each side is equivalent to Definition 6.4(2) of [TakeutiZaring] p. 23, who use the notation "Un(A)" for single-valued. Note that  A is not necessarily a function. (Contributed by NM, 13-Aug-2004.)
 |-  ( Fun  `' `' A 
 <-> 
 A. x E* y  x A y )
 
Theoremsvrelfun 5263 A single-valued relation is a function. (See fun2cnv 5262 for "single-valued.") Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 17-Jan-2006.)
 |-  ( Fun  A  <->  ( Rel  A  /\  Fun  `' `' A ) )
 
Theoremfncnv 5264* Single-rootedness (see funcnv 5259) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.)
 |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R y )
 
Theoremfun11 5265* Two ways of stating that  A is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.)
 |-  ( ( Fun  `' `' A  /\  Fun  `' A )  <->  A. x A. y A. z A. w ( ( x A y 
 /\  z A w )  ->  ( x  =  z  <->  y  =  w ) ) )
 
Theoremfununi 5266* The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004.)
 |-  ( A. f  e.  A  ( Fun  f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f )
 )  ->  Fun  U. A )
 
Theoremfuncnvuni 5267* The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 5259 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.)
 |-  ( A. f  e.  A  ( Fun  `' f  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f
 ) )  ->  Fun  `' U. A )
 
Theoremfun11uni 5268* The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.)
 |-  ( A. f  e.  A  ( ( Fun  f  /\  Fun  `' f )  /\  A. g  e.  A  ( f  C_  g  \/  g  C_  f
 ) )  ->  ( Fun  U. A  /\  Fun  `'
 U. A ) )
 
Theoremfunin 5269 The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( Fun  F  ->  Fun  ( F  i^i  G ) )
 
Theoremfunres11 5270 The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
 |-  ( Fun  `' F  ->  Fun  `' ( F  |`  A ) )
 
Theoremfuncnvres 5271 The converse of a restricted function. (Contributed by NM, 27-Mar-1998.)
 |-  ( Fun  `' F  ->  `' ( F  |`  A )  =  ( `' F  |`  ( F " A ) ) )
 
Theoremcnvresid 5272 Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
 |-  `' (  _I  |`  A )  =  (  _I  |`  A )
 
Theoremfuncnvres2 5273 The converse of a restriction of the converse of a function equals the function restricted to the image of its converse. (Contributed by NM, 4-May-2005.)
 |-  ( Fun  F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )
 
Theoremfunimacnv 5274 The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
 |-  ( Fun  F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F )
 )
 
Theoremfunimass1 5275 A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
 |-  ( ( Fun  F  /\  A  C_  ran  F ) 
 ->  ( ( `' F " A )  C_  B  ->  A  C_  ( F " B ) ) )
 
Theoremfunimass2 5276 A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
 |-  ( ( Fun  F  /\  A  C_  ( `' F " B ) ) 
 ->  ( F " A )  C_  B )
 
Theoremimadiflem 5277 One direction of imadif 5278. This direction does not require  Fun  `' F. (Contributed by Jim Kingdon, 25-Dec-2018.)
 |-  ( ( F " A )  \  ( F
 " B ) ) 
 C_  ( F "
 ( A  \  B ) )
 
Theoremimadif 5278 The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
 |-  ( Fun  `' F  ->  ( F " ( A  \  B ) )  =  ( ( F
 " A )  \  ( F " B ) ) )
 
Theoremimainlem 5279 One direction of imain 5280. This direction does not require  Fun  `' F. (Contributed by Jim Kingdon, 25-Dec-2018.)
 |-  ( F " ( A  i^i  B ) ) 
 C_  ( ( F
 " A )  i^i  ( F " B ) )
 
Theoremimain 5280 The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
 |-  ( Fun  `' F  ->  ( F " ( A  i^i  B ) )  =  ( ( F
 " A )  i^i  ( F " B ) ) )
 
Theoremfunimaexglem 5281 Lemma for funimaexg 5282. It constitutes the interesting part of funimaexg 5282, in which  B 
C_  dom  A. (Contributed by Jim Kingdon, 27-Dec-2018.)
 |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e.  _V )
 
Theoremfunimaexg 5282 Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A " B )  e.  _V )
 
Theoremfunimaex 5283 The image of a set under any function is also a set. Equivalent of Axiom of Replacement. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 17-Nov-2002.)
 |-  B  e.  _V   =>    |-  ( Fun  A  ->  ( A " B )  e.  _V )
 
Theoremisarep1 5284* Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by  ph ( x ,  y ) i.e. the class  ( {
<. x ,  y >.  |  ph } " A
). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
 |-  ( b  e.  ( { <. x ,  y >.  |  ph } " A )  <->  E. x  e.  A  [ b  /  y ] ph )
 
Theoremisarep2 5285* Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature " [ i, 
[ i, i  ] => o  ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 5283. (Contributed by NM, 26-Oct-2006.)
 |-  A  e.  _V   &    |-  A. x  e.  A  A. y A. z ( ( ph  /\ 
 [ z  /  y ] ph )  ->  y  =  z )   =>    |- 
 E. w  w  =  ( { <. x ,  y >.  |  ph } " A )
 
Theoremfneq1 5286 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
 |-  ( F  =  G  ->  ( F  Fn  A  <->  G  Fn  A ) )
 
Theoremfneq2 5287 Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  =  B  ->  ( F  Fn  A  <->  F  Fn  B ) )
 
Theoremfneq1d 5288 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  F  =  G )   =>    |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  A ) )
 
Theoremfneq2d 5289 Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F  Fn  A  <->  F  Fn  B ) )
 
Theoremfneq12d 5290 Equality deduction for function predicate with domain. (Contributed by NM, 26-Jun-2011.)
 |-  ( ph  ->  F  =  G )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F  Fn  A  <->  G  Fn  B ) )
 
Theoremfneq12 5291 Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.)
 |-  ( ( F  =  G  /\  A  =  B )  ->  ( F  Fn  A 
 <->  G  Fn  B ) )
 
Theoremfneq1i 5292 Equality inference for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  F  =  G   =>    |-  ( F  Fn  A 
 <->  G  Fn  A )
 
Theoremfneq2i 5293 Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.)
 |-  A  =  B   =>    |-  ( F  Fn  A 
 <->  F  Fn  B )
 
Theoremnffn 5294 Bound-variable hypothesis builder for a function with domain. (Contributed by NM, 30-Jan-2004.)
 |-  F/_ x F   &    |-  F/_ x A   =>    |-  F/ x  F  Fn  A
 
Theoremfnfun 5295 A function with domain is a function. (Contributed by NM, 1-Aug-1994.)
 |-  ( F  Fn  A  ->  Fun  F )
 
Theoremfnrel 5296 A function with domain is a relation. (Contributed by NM, 1-Aug-1994.)
 |-  ( F  Fn  A  ->  Rel  F )
 
Theoremfndm 5297 The domain of a function. (Contributed by NM, 2-Aug-1994.)
 |-  ( F  Fn  A  ->  dom  F  =  A )
 
Theoremfunfni 5298 Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.)
 |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  ph )   =>    |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ph )
 
Theoremfndmu 5299 A function has a unique domain. (Contributed by NM, 11-Aug-1994.)
 |-  ( ( F  Fn  A  /\  F  Fn  B )  ->  A  =  B )
 
Theoremfnbr 5300 The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
 |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >