ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfn Unicode version

Theorem funfn 5289
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funfn  |-  ( Fun 
A  <->  A  Fn  dom  A )

Proof of Theorem funfn
StepHypRef Expression
1 eqid 2196 . . 3  |-  dom  A  =  dom  A
21biantru 302 . 2  |-  ( Fun 
A  <->  ( Fun  A  /\  dom  A  =  dom  A ) )
3 df-fn 5262 . 2  |-  ( A  Fn  dom  A  <->  ( Fun  A  /\  dom  A  =  dom  A ) )
42, 3bitr4i 187 1  |-  ( Fun 
A  <->  A  Fn  dom  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   dom cdm 4664   Fun wfun 5253    Fn wfn 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-fn 5262
This theorem is referenced by:  funfnd  5290  funssxp  5428  funforn  5488  funbrfvb  5604  funopfvb  5605  ssimaex  5623  fvco  5632  eqfunfv  5665  fvimacnvi  5677  unpreima  5688  respreima  5691  elrnrexdm  5702  elrnrexdmb  5703  ffvresb  5726  funresdfunsnss  5766  resfunexg  5784  funex  5786  elunirn  5814  smores  6351  smores2  6353  tfrlem1  6367  funresdfunsndc  6565  fundmfibi  7005  resunimafz0  10925  fclim  11461
  Copyright terms: Public domain W3C validator