ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfn Unicode version

Theorem funfn 5320
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funfn  |-  ( Fun 
A  <->  A  Fn  dom  A )

Proof of Theorem funfn
StepHypRef Expression
1 eqid 2207 . . 3  |-  dom  A  =  dom  A
21biantru 302 . 2  |-  ( Fun 
A  <->  ( Fun  A  /\  dom  A  =  dom  A ) )
3 df-fn 5293 . 2  |-  ( A  Fn  dom  A  <->  ( Fun  A  /\  dom  A  =  dom  A ) )
42, 3bitr4i 187 1  |-  ( Fun 
A  <->  A  Fn  dom  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   dom cdm 4693   Fun wfun 5284    Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1473  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-fn 5293
This theorem is referenced by:  funfnd  5321  funssxp  5465  funforn  5527  funbrfvb  5644  funopfvb  5645  ssimaex  5663  fvco  5672  eqfunfv  5705  fvimacnvi  5717  unpreima  5728  respreima  5731  elrnrexdm  5742  elrnrexdmb  5743  ffvresb  5766  funiun  5784  funresdfunsnss  5810  resfunexg  5828  funex  5830  elunirn  5858  smores  6401  smores2  6403  tfrlem1  6417  funresdfunsndc  6615  fundmfibi  7066  resunimafz0  11013  fclim  11720
  Copyright terms: Public domain W3C validator