| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfn | Unicode version | ||
| Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . 3
| |
| 2 | 1 | biantru 302 |
. 2
|
| 3 | df-fn 5262 |
. 2
| |
| 4 | 2, 3 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5262 |
| This theorem is referenced by: funfnd 5290 funssxp 5430 funforn 5490 funbrfvb 5606 funopfvb 5607 ssimaex 5625 fvco 5634 eqfunfv 5667 fvimacnvi 5679 unpreima 5690 respreima 5693 elrnrexdm 5704 elrnrexdmb 5705 ffvresb 5728 funresdfunsnss 5768 resfunexg 5786 funex 5788 elunirn 5816 smores 6359 smores2 6361 tfrlem1 6375 funresdfunsndc 6573 fundmfibi 7013 resunimafz0 10940 fclim 11476 |
| Copyright terms: Public domain | W3C validator |