| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfn | Unicode version | ||
| Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . 3
| |
| 2 | 1 | biantru 302 |
. 2
|
| 3 | df-fn 5274 |
. 2
| |
| 4 | 2, 3 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-fn 5274 |
| This theorem is referenced by: funfnd 5302 funssxp 5445 funforn 5505 funbrfvb 5621 funopfvb 5622 ssimaex 5640 fvco 5649 eqfunfv 5682 fvimacnvi 5694 unpreima 5705 respreima 5708 elrnrexdm 5719 elrnrexdmb 5720 ffvresb 5743 funiun 5761 funresdfunsnss 5787 resfunexg 5805 funex 5807 elunirn 5835 smores 6378 smores2 6380 tfrlem1 6394 funresdfunsndc 6592 fundmfibi 7040 resunimafz0 10976 fclim 11605 |
| Copyright terms: Public domain | W3C validator |