| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfn | Unicode version | ||
| Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . 3
| |
| 2 | 1 | biantru 302 |
. 2
|
| 3 | df-fn 5321 |
. 2
| |
| 4 | 2, 3 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-fn 5321 |
| This theorem is referenced by: funfnd 5349 funssxp 5493 funforn 5555 funbrfvb 5674 funopfvb 5675 ssimaex 5695 fvco 5704 eqfunfv 5737 fvimacnvi 5749 unpreima 5760 respreima 5763 elrnrexdm 5774 elrnrexdmb 5775 ffvresb 5798 funiun 5816 funresdfunsnss 5842 resfunexg 5860 funex 5862 elunirn 5890 smores 6438 smores2 6440 tfrlem1 6454 funresdfunsndc 6652 fundmfibi 7105 resunimafz0 11053 fclim 11805 ausgrumgrien 15968 |
| Copyright terms: Public domain | W3C validator |