| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfn | Unicode version | ||
| Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . 3
| |
| 2 | 1 | biantru 302 |
. 2
|
| 3 | df-fn 5262 |
. 2
| |
| 4 | 2, 3 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5262 |
| This theorem is referenced by: funfnd 5290 funssxp 5428 funforn 5488 funbrfvb 5604 funopfvb 5605 ssimaex 5623 fvco 5632 eqfunfv 5665 fvimacnvi 5677 unpreima 5688 respreima 5691 elrnrexdm 5702 elrnrexdmb 5703 ffvresb 5726 funresdfunsnss 5766 resfunexg 5784 funex 5786 elunirn 5814 smores 6351 smores2 6353 tfrlem1 6367 funresdfunsndc 6565 fundmfibi 7005 resunimafz0 10925 fclim 11461 |
| Copyright terms: Public domain | W3C validator |