ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfn Unicode version

Theorem funfn 5284
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funfn  |-  ( Fun 
A  <->  A  Fn  dom  A )

Proof of Theorem funfn
StepHypRef Expression
1 eqid 2193 . . 3  |-  dom  A  =  dom  A
21biantru 302 . 2  |-  ( Fun 
A  <->  ( Fun  A  /\  dom  A  =  dom  A ) )
3 df-fn 5257 . 2  |-  ( A  Fn  dom  A  <->  ( Fun  A  /\  dom  A  =  dom  A ) )
42, 3bitr4i 187 1  |-  ( Fun 
A  <->  A  Fn  dom  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   dom cdm 4659   Fun wfun 5248    Fn wfn 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-fn 5257
This theorem is referenced by:  funfnd  5285  funssxp  5423  funforn  5483  funbrfvb  5599  funopfvb  5600  ssimaex  5618  fvco  5627  eqfunfv  5660  fvimacnvi  5672  unpreima  5683  respreima  5686  elrnrexdm  5697  elrnrexdmb  5698  ffvresb  5721  funresdfunsnss  5761  resfunexg  5779  funex  5781  elunirn  5809  smores  6345  smores2  6347  tfrlem1  6361  funresdfunsndc  6559  fundmfibi  6997  resunimafz0  10902  fclim  11437
  Copyright terms: Public domain W3C validator