| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfn | Unicode version | ||
| Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . 3
| |
| 2 | 1 | biantru 302 |
. 2
|
| 3 | df-fn 5293 |
. 2
| |
| 4 | 2, 3 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-fn 5293 |
| This theorem is referenced by: funfnd 5321 funssxp 5465 funforn 5527 funbrfvb 5644 funopfvb 5645 ssimaex 5663 fvco 5672 eqfunfv 5705 fvimacnvi 5717 unpreima 5728 respreima 5731 elrnrexdm 5742 elrnrexdmb 5743 ffvresb 5766 funiun 5784 funresdfunsnss 5810 resfunexg 5828 funex 5830 elunirn 5858 smores 6401 smores2 6403 tfrlem1 6417 funresdfunsndc 6615 fundmfibi 7066 resunimafz0 11013 fclim 11720 |
| Copyright terms: Public domain | W3C validator |