ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfn Unicode version

Theorem funfn 5288
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funfn  |-  ( Fun 
A  <->  A  Fn  dom  A )

Proof of Theorem funfn
StepHypRef Expression
1 eqid 2196 . . 3  |-  dom  A  =  dom  A
21biantru 302 . 2  |-  ( Fun 
A  <->  ( Fun  A  /\  dom  A  =  dom  A ) )
3 df-fn 5261 . 2  |-  ( A  Fn  dom  A  <->  ( Fun  A  /\  dom  A  =  dom  A ) )
42, 3bitr4i 187 1  |-  ( Fun 
A  <->  A  Fn  dom  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   dom cdm 4663   Fun wfun 5252    Fn wfn 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1463  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-fn 5261
This theorem is referenced by:  funfnd  5289  funssxp  5427  funforn  5487  funbrfvb  5603  funopfvb  5604  ssimaex  5622  fvco  5631  eqfunfv  5664  fvimacnvi  5676  unpreima  5687  respreima  5690  elrnrexdm  5701  elrnrexdmb  5702  ffvresb  5725  funresdfunsnss  5765  resfunexg  5783  funex  5785  elunirn  5813  smores  6350  smores2  6352  tfrlem1  6366  funresdfunsndc  6564  fundmfibi  7004  resunimafz0  10923  fclim  11459
  Copyright terms: Public domain W3C validator