| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > funfn | Unicode version | ||
| Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) | 
| Ref | Expression | 
|---|---|
| funfn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. . 3
 | |
| 2 | 1 | biantru 302 | 
. 2
 | 
| 3 | df-fn 5261 | 
. 2
 | |
| 4 | 2, 3 | bitr4i 187 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5261 | 
| This theorem is referenced by: funfnd 5289 funssxp 5427 funforn 5487 funbrfvb 5603 funopfvb 5604 ssimaex 5622 fvco 5631 eqfunfv 5664 fvimacnvi 5676 unpreima 5687 respreima 5690 elrnrexdm 5701 elrnrexdmb 5702 ffvresb 5725 funresdfunsnss 5765 resfunexg 5783 funex 5785 elunirn 5813 smores 6350 smores2 6352 tfrlem1 6366 funresdfunsndc 6564 fundmfibi 7004 resunimafz0 10923 fclim 11459 | 
| Copyright terms: Public domain | W3C validator |