| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfn | Unicode version | ||
| Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . 3
| |
| 2 | 1 | biantru 302 |
. 2
|
| 3 | df-fn 5275 |
. 2
| |
| 4 | 2, 3 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-fn 5275 |
| This theorem is referenced by: funfnd 5303 funssxp 5447 funforn 5507 funbrfvb 5623 funopfvb 5624 ssimaex 5642 fvco 5651 eqfunfv 5684 fvimacnvi 5696 unpreima 5707 respreima 5710 elrnrexdm 5721 elrnrexdmb 5722 ffvresb 5745 funiun 5763 funresdfunsnss 5789 resfunexg 5807 funex 5809 elunirn 5837 smores 6380 smores2 6382 tfrlem1 6396 funresdfunsndc 6594 fundmfibi 7042 resunimafz0 10978 fclim 11638 |
| Copyright terms: Public domain | W3C validator |