ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfn Unicode version

Theorem funfn 5285
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funfn  |-  ( Fun 
A  <->  A  Fn  dom  A )

Proof of Theorem funfn
StepHypRef Expression
1 eqid 2193 . . 3  |-  dom  A  =  dom  A
21biantru 302 . 2  |-  ( Fun 
A  <->  ( Fun  A  /\  dom  A  =  dom  A ) )
3 df-fn 5258 . 2  |-  ( A  Fn  dom  A  <->  ( Fun  A  /\  dom  A  =  dom  A ) )
42, 3bitr4i 187 1  |-  ( Fun 
A  <->  A  Fn  dom  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   dom cdm 4660   Fun wfun 5249    Fn wfn 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-fn 5258
This theorem is referenced by:  funfnd  5286  funssxp  5424  funforn  5484  funbrfvb  5600  funopfvb  5601  ssimaex  5619  fvco  5628  eqfunfv  5661  fvimacnvi  5673  unpreima  5684  respreima  5687  elrnrexdm  5698  elrnrexdmb  5699  ffvresb  5722  funresdfunsnss  5762  resfunexg  5780  funex  5782  elunirn  5810  smores  6347  smores2  6349  tfrlem1  6363  funresdfunsndc  6561  fundmfibi  6999  resunimafz0  10905  fclim  11440
  Copyright terms: Public domain W3C validator