ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfn Unicode version

Theorem funfn 5301
Description: An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funfn  |-  ( Fun 
A  <->  A  Fn  dom  A )

Proof of Theorem funfn
StepHypRef Expression
1 eqid 2205 . . 3  |-  dom  A  =  dom  A
21biantru 302 . 2  |-  ( Fun 
A  <->  ( Fun  A  /\  dom  A  =  dom  A ) )
3 df-fn 5274 . 2  |-  ( A  Fn  dom  A  <->  ( Fun  A  /\  dom  A  =  dom  A ) )
42, 3bitr4i 187 1  |-  ( Fun 
A  <->  A  Fn  dom  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   dom cdm 4675   Fun wfun 5265    Fn wfn 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1472  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-fn 5274
This theorem is referenced by:  funfnd  5302  funssxp  5445  funforn  5505  funbrfvb  5621  funopfvb  5622  ssimaex  5640  fvco  5649  eqfunfv  5682  fvimacnvi  5694  unpreima  5705  respreima  5708  elrnrexdm  5719  elrnrexdmb  5720  ffvresb  5743  funiun  5761  funresdfunsnss  5787  resfunexg  5805  funex  5807  elunirn  5835  smores  6378  smores2  6380  tfrlem1  6394  funresdfunsndc  6592  fundmfibi  7040  resunimafz0  10976  fclim  11605
  Copyright terms: Public domain W3C validator