ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvfgg Unicode version

Theorem dvfgg 15275
Description: Explicitly write out the functionality condition on derivative for  S  =  RR and 
CC. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
Assertion
Ref Expression
dvfgg  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )

Proof of Theorem dvfgg
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recnprss 15274 . . . . 5  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
2 reldvg 15266 . . . . 5  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )
31, 2sylan 283 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )
4 elpmi 6777 . . . . . . . . . . . . . 14  |-  ( F  e.  ( CC  ^pm  S )  ->  ( F : dom  F --> CC  /\  dom  F  C_  S )
)
54simpld 112 . . . . . . . . . . . . 13  |-  ( F  e.  ( CC  ^pm  S )  ->  F : dom  F --> CC )
65adantl 277 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  F : dom  F --> CC )
76adantr 276 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  F : dom  F --> CC )
84simprd 114 . . . . . . . . . . . . . 14  |-  ( F  e.  ( CC  ^pm  S )  ->  dom  F  C_  S )
98adantl 277 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  S )
101adantr 276 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  S  C_  CC )
119, 10sstrd 3211 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  CC )
1211adantr 276 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  dom  F  C_  CC )
13 eqid 2207 . . . . . . . . . . . . . . . . 17  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
1413cntoptopon 15119 . . . . . . . . . . . . . . . 16  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
15 resttopon 14758 . . . . . . . . . . . . . . . 16  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( ( MetOpen `  ( abs  o.  -  )
)t 
S )  e.  (TopOn `  S ) )
1614, 15mpan 424 . . . . . . . . . . . . . . 15  |-  ( S 
C_  CC  ->  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  e.  (TopOn `  S
) )
17 topontop 14601 . . . . . . . . . . . . . . 15  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  (TopOn `  S
)  ->  ( ( MetOpen
`  ( abs  o.  -  ) )t  S )  e.  Top )
1816, 17syl 14 . . . . . . . . . . . . . 14  |-  ( S 
C_  CC  ->  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
1910, 18syl 14 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  Top )
20 toponuni 14602 . . . . . . . . . . . . . . . . 17  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  (TopOn `  S
)  ->  S  =  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) )
2116, 20syl 14 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  CC  ->  S  = 
U. ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) )
2221sseq2d 3231 . . . . . . . . . . . . . . 15  |-  ( S 
C_  CC  ->  ( dom 
F  C_  S  <->  dom  F  C_  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) )
2310, 22syl 14 . . . . . . . . . . . . . 14  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( dom  F  C_  S  <->  dom  F  C_  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) )
249, 23mpbid 147 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  U. ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) )
25 eqid 2207 . . . . . . . . . . . . . 14  |-  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S )  =  U. ( (
MetOpen `  ( abs  o.  -  ) )t  S )
2625ntrss2 14708 . . . . . . . . . . . . 13  |-  ( ( ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top  /\  dom  F  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )  ->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F )  C_  dom  F )
2719, 24, 26syl2anc 411 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  C_  dom  F )
2827sselda 3201 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  x  e.  dom  F )
297, 12, 28dvlemap 15267 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) )  /\  z  e.  { w  e.  dom  F  |  w #  x }
)  ->  ( (
( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) )  e.  CC )
3029fmpttd 5758 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  -> 
( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) : { w  e.  dom  F  |  w #  x } --> CC )
31 ssrab2 3286 . . . . . . . . . 10  |-  { w  e.  dom  F  |  w #  x }  C_  dom  F
3231, 12sstrid 3212 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  { w  e.  dom  F  |  w #  x }  C_  CC )
3312, 28sseldd 3202 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  x  e.  CC )
34 simpr 110 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )
3527, 9sstrd 3211 . . . . . . . . . 10  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  C_  S )
3635sselda 3201 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  x  e.  S )
3719adantr 276 . . . . . . . . . 10  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  -> 
( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
3824adantr 276 . . . . . . . . . 10  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  dom  F  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
3925ntropn 14704 . . . . . . . . . 10  |-  ( ( ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top  /\  dom  F  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )  ->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F )  e.  ( ( MetOpen `  ( abs  o. 
-  ) )t  S ) )
4037, 38, 39syl2anc 411 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  -> 
( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) )
41 simpll 527 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  S  e.  { RR ,  CC } )
42 rabss2 3284 . . . . . . . . . . 11  |-  ( ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  C_  dom  F  ->  { w  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  |  w #  x }  C_  { w  e. 
dom  F  |  w #  x } )
4327, 42syl 14 . . . . . . . . . 10  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  { w  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  |  w #  x }  C_  { w  e. 
dom  F  |  w #  x } )
4443adantr 276 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  { w  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  |  w #  x }  C_  { w  e. 
dom  F  |  w #  x } )
4530, 32, 33, 34, 36, 40, 41, 44, 13limcimo 15252 . . . . . . . 8  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  E* y  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
4645ex 115 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
x  e.  ( ( int `  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F
)  ->  E* y 
y  e.  ( ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
47 moanimv 2131 . . . . . . 7  |-  ( E* y ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  /\  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  <->  ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  ->  E* y 
y  e.  ( ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
4846, 47sylibr 134 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  E* y ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  /\  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
49 eqid 2207 . . . . . . . 8  |-  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  =  ( ( MetOpen `  ( abs  o.  -  )
)t 
S )
50 eqid 2207 . . . . . . . 8  |-  ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )  =  ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) )
5149, 13, 50, 10, 6, 9eldvap 15269 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
x ( S  _D  F ) y  <->  ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  /\  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) ) )
5251mobidv 2091 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( E* y  x ( S  _D  F ) y  <->  E* y ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  /\  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) ) )
5348, 52mpbird 167 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  E* y  x ( S  _D  F ) y )
5453alrimiv 1898 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  A. x E* y  x ( S  _D  F ) y )
55 dffun6 5304 . . . 4  |-  ( Fun  ( S  _D  F
)  <->  ( Rel  ( S  _D  F )  /\  A. x E* y  x ( S  _D  F
) y ) )
563, 54, 55sylanbrc 417 . . 3  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  Fun  ( S  _D  F
) )
5756funfnd 5321 . 2  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F )  Fn 
dom  ( S  _D  F ) )
58 vex 2779 . . . . 5  |-  y  e. 
_V
5958elrn 4940 . . . 4  |-  ( y  e.  ran  ( S  _D  F )  <->  E. x  x ( S  _D  F ) y )
6010, 6, 9dvcl 15270 . . . . . 6  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x ( S  _D  F ) y )  ->  y  e.  CC )
6160ex 115 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
x ( S  _D  F ) y  -> 
y  e.  CC ) )
6261exlimdv 1843 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( E. x  x ( S  _D  F ) y  ->  y  e.  CC ) )
6359, 62biimtrid 152 . . 3  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
y  e.  ran  ( S  _D  F )  -> 
y  e.  CC ) )
6463ssrdv 3207 . 2  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ran  ( S  _D  F
)  C_  CC )
65 df-f 5294 . 2  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC  <->  ( ( S  _D  F
)  Fn  dom  ( S  _D  F )  /\  ran  ( S  _D  F
)  C_  CC )
)
6657, 64, 65sylanbrc 417 1  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1516   E*wmo 2056    e. wcel 2178   {crab 2490    C_ wss 3174   {cpr 3644   U.cuni 3864   class class class wbr 4059    |-> cmpt 4121   dom cdm 4693   ran crn 4694    o. ccom 4697   Rel wrel 4698   Fun wfun 5284    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967    ^pm cpm 6759   CCcc 7958   RRcr 7959    - cmin 8278   # cap 8689    / cdiv 8780   abscabs 11423   ↾t crest 13186   MetOpencmopn 14418   Topctop 14584  TopOnctopon 14597   intcnt 14680   lim CC climc 15241    _D cdv 15242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-pm 6761  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-limced 15243  df-dvap 15244
This theorem is referenced by:  dvfpm  15276  dvfcnpm  15277  dvidsslem  15280  dvaddxx  15290  dvmulxx  15291  dviaddf  15292  dvimulf  15293  dvmptclx  15305
  Copyright terms: Public domain W3C validator