ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvfgg Unicode version

Theorem dvfgg 14924
Description: Explicitly write out the functionality condition on derivative for  S  =  RR and 
CC. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
Assertion
Ref Expression
dvfgg  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )

Proof of Theorem dvfgg
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recnprss 14923 . . . . 5  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
2 reldvg 14915 . . . . 5  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )
31, 2sylan 283 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )
4 elpmi 6726 . . . . . . . . . . . . . 14  |-  ( F  e.  ( CC  ^pm  S )  ->  ( F : dom  F --> CC  /\  dom  F  C_  S )
)
54simpld 112 . . . . . . . . . . . . 13  |-  ( F  e.  ( CC  ^pm  S )  ->  F : dom  F --> CC )
65adantl 277 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  F : dom  F --> CC )
76adantr 276 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  F : dom  F --> CC )
84simprd 114 . . . . . . . . . . . . . 14  |-  ( F  e.  ( CC  ^pm  S )  ->  dom  F  C_  S )
98adantl 277 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  S )
101adantr 276 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  S  C_  CC )
119, 10sstrd 3193 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  CC )
1211adantr 276 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  dom  F  C_  CC )
13 eqid 2196 . . . . . . . . . . . . . . . . 17  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
1413cntoptopon 14768 . . . . . . . . . . . . . . . 16  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
15 resttopon 14407 . . . . . . . . . . . . . . . 16  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( ( MetOpen `  ( abs  o.  -  )
)t 
S )  e.  (TopOn `  S ) )
1614, 15mpan 424 . . . . . . . . . . . . . . 15  |-  ( S 
C_  CC  ->  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  e.  (TopOn `  S
) )
17 topontop 14250 . . . . . . . . . . . . . . 15  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  (TopOn `  S
)  ->  ( ( MetOpen
`  ( abs  o.  -  ) )t  S )  e.  Top )
1816, 17syl 14 . . . . . . . . . . . . . 14  |-  ( S 
C_  CC  ->  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
1910, 18syl 14 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  Top )
20 toponuni 14251 . . . . . . . . . . . . . . . . 17  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  (TopOn `  S
)  ->  S  =  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) )
2116, 20syl 14 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  CC  ->  S  = 
U. ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) )
2221sseq2d 3213 . . . . . . . . . . . . . . 15  |-  ( S 
C_  CC  ->  ( dom 
F  C_  S  <->  dom  F  C_  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) )
2310, 22syl 14 . . . . . . . . . . . . . 14  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( dom  F  C_  S  <->  dom  F  C_  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) )
249, 23mpbid 147 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  U. ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) )
25 eqid 2196 . . . . . . . . . . . . . 14  |-  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S )  =  U. ( (
MetOpen `  ( abs  o.  -  ) )t  S )
2625ntrss2 14357 . . . . . . . . . . . . 13  |-  ( ( ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top  /\  dom  F  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )  ->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F )  C_  dom  F )
2719, 24, 26syl2anc 411 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  C_  dom  F )
2827sselda 3183 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  x  e.  dom  F )
297, 12, 28dvlemap 14916 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) )  /\  z  e.  { w  e.  dom  F  |  w #  x }
)  ->  ( (
( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) )  e.  CC )
3029fmpttd 5717 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  -> 
( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) : { w  e.  dom  F  |  w #  x } --> CC )
31 ssrab2 3268 . . . . . . . . . 10  |-  { w  e.  dom  F  |  w #  x }  C_  dom  F
3231, 12sstrid 3194 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  { w  e.  dom  F  |  w #  x }  C_  CC )
3312, 28sseldd 3184 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  x  e.  CC )
34 simpr 110 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )
3527, 9sstrd 3193 . . . . . . . . . 10  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  C_  S )
3635sselda 3183 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  x  e.  S )
3719adantr 276 . . . . . . . . . 10  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  -> 
( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
3824adantr 276 . . . . . . . . . 10  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  dom  F  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
3925ntropn 14353 . . . . . . . . . 10  |-  ( ( ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top  /\  dom  F  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )  ->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F )  e.  ( ( MetOpen `  ( abs  o. 
-  ) )t  S ) )
4037, 38, 39syl2anc 411 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  -> 
( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) )
41 simpll 527 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  S  e.  { RR ,  CC } )
42 rabss2 3266 . . . . . . . . . . 11  |-  ( ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  C_  dom  F  ->  { w  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  |  w #  x }  C_  { w  e. 
dom  F  |  w #  x } )
4327, 42syl 14 . . . . . . . . . 10  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  { w  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  |  w #  x }  C_  { w  e. 
dom  F  |  w #  x } )
4443adantr 276 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  { w  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  |  w #  x }  C_  { w  e. 
dom  F  |  w #  x } )
4530, 32, 33, 34, 36, 40, 41, 44, 13limcimo 14901 . . . . . . . 8  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  E* y  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
4645ex 115 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
x  e.  ( ( int `  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F
)  ->  E* y 
y  e.  ( ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
47 moanimv 2120 . . . . . . 7  |-  ( E* y ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  /\  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  <->  ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  ->  E* y 
y  e.  ( ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
4846, 47sylibr 134 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  E* y ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  /\  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
49 eqid 2196 . . . . . . . 8  |-  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  =  ( ( MetOpen `  ( abs  o.  -  )
)t 
S )
50 eqid 2196 . . . . . . . 8  |-  ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )  =  ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) )
5149, 13, 50, 10, 6, 9eldvap 14918 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
x ( S  _D  F ) y  <->  ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  /\  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) ) )
5251mobidv 2081 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( E* y  x ( S  _D  F ) y  <->  E* y ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  /\  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) ) )
5348, 52mpbird 167 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  E* y  x ( S  _D  F ) y )
5453alrimiv 1888 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  A. x E* y  x ( S  _D  F ) y )
55 dffun6 5272 . . . 4  |-  ( Fun  ( S  _D  F
)  <->  ( Rel  ( S  _D  F )  /\  A. x E* y  x ( S  _D  F
) y ) )
563, 54, 55sylanbrc 417 . . 3  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  Fun  ( S  _D  F
) )
5756funfnd 5289 . 2  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F )  Fn 
dom  ( S  _D  F ) )
58 vex 2766 . . . . 5  |-  y  e. 
_V
5958elrn 4909 . . . 4  |-  ( y  e.  ran  ( S  _D  F )  <->  E. x  x ( S  _D  F ) y )
6010, 6, 9dvcl 14919 . . . . . 6  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x ( S  _D  F ) y )  ->  y  e.  CC )
6160ex 115 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
x ( S  _D  F ) y  -> 
y  e.  CC ) )
6261exlimdv 1833 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( E. x  x ( S  _D  F ) y  ->  y  e.  CC ) )
6359, 62biimtrid 152 . . 3  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
y  e.  ran  ( S  _D  F )  -> 
y  e.  CC ) )
6463ssrdv 3189 . 2  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ran  ( S  _D  F
)  C_  CC )
65 df-f 5262 . 2  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC  <->  ( ( S  _D  F
)  Fn  dom  ( S  _D  F )  /\  ran  ( S  _D  F
)  C_  CC )
)
6657, 64, 65sylanbrc 417 1  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1506   E*wmo 2046    e. wcel 2167   {crab 2479    C_ wss 3157   {cpr 3623   U.cuni 3839   class class class wbr 4033    |-> cmpt 4094   dom cdm 4663   ran crn 4664    o. ccom 4667   Rel wrel 4668   Fun wfun 5252    Fn wfn 5253   -->wf 5254   ` cfv 5258  (class class class)co 5922    ^pm cpm 6708   CCcc 7877   RRcr 7878    - cmin 8197   # cap 8608    / cdiv 8699   abscabs 11162   ↾t crest 12910   MetOpencmopn 14097   Topctop 14233  TopOnctopon 14246   intcnt 14329   lim CC climc 14890    _D cdv 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pm 6710  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-limced 14892  df-dvap 14893
This theorem is referenced by:  dvfpm  14925  dvfcnpm  14926  dvidsslem  14929  dvaddxx  14939  dvmulxx  14940  dviaddf  14941  dvimulf  14942  dvmptclx  14954
  Copyright terms: Public domain W3C validator