ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvfgg Unicode version

Theorem dvfgg 13451
Description: Explicitly write out the functionality condition on derivative for  S  =  RR and 
CC. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
Assertion
Ref Expression
dvfgg  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )

Proof of Theorem dvfgg
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recnprss 13450 . . . . 5  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
2 reldvg 13442 . . . . 5  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )
31, 2sylan 281 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )
4 elpmi 6645 . . . . . . . . . . . . . 14  |-  ( F  e.  ( CC  ^pm  S )  ->  ( F : dom  F --> CC  /\  dom  F  C_  S )
)
54simpld 111 . . . . . . . . . . . . 13  |-  ( F  e.  ( CC  ^pm  S )  ->  F : dom  F --> CC )
65adantl 275 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  F : dom  F --> CC )
76adantr 274 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  F : dom  F --> CC )
84simprd 113 . . . . . . . . . . . . . 14  |-  ( F  e.  ( CC  ^pm  S )  ->  dom  F  C_  S )
98adantl 275 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  S )
101adantr 274 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  S  C_  CC )
119, 10sstrd 3157 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  CC )
1211adantr 274 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  dom  F  C_  CC )
13 eqid 2170 . . . . . . . . . . . . . . . . 17  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
1413cntoptopon 13326 . . . . . . . . . . . . . . . 16  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
15 resttopon 12965 . . . . . . . . . . . . . . . 16  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( ( MetOpen `  ( abs  o.  -  )
)t 
S )  e.  (TopOn `  S ) )
1614, 15mpan 422 . . . . . . . . . . . . . . 15  |-  ( S 
C_  CC  ->  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  e.  (TopOn `  S
) )
17 topontop 12806 . . . . . . . . . . . . . . 15  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  (TopOn `  S
)  ->  ( ( MetOpen
`  ( abs  o.  -  ) )t  S )  e.  Top )
1816, 17syl 14 . . . . . . . . . . . . . 14  |-  ( S 
C_  CC  ->  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
1910, 18syl 14 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  Top )
20 toponuni 12807 . . . . . . . . . . . . . . . . 17  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )t  S )  e.  (TopOn `  S
)  ->  S  =  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) )
2116, 20syl 14 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  CC  ->  S  = 
U. ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) )
2221sseq2d 3177 . . . . . . . . . . . . . . 15  |-  ( S 
C_  CC  ->  ( dom 
F  C_  S  <->  dom  F  C_  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) )
2310, 22syl 14 . . . . . . . . . . . . . 14  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( dom  F  C_  S  <->  dom  F  C_  U. ( ( MetOpen `  ( abs  o.  -  ) )t  S ) ) )
249, 23mpbid 146 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  dom  F 
C_  U. ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) )
25 eqid 2170 . . . . . . . . . . . . . 14  |-  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S )  =  U. ( (
MetOpen `  ( abs  o.  -  ) )t  S )
2625ntrss2 12915 . . . . . . . . . . . . 13  |-  ( ( ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top  /\  dom  F  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )  ->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F )  C_  dom  F )
2719, 24, 26syl2anc 409 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  C_  dom  F )
2827sselda 3147 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  x  e.  dom  F )
297, 12, 28dvlemap 13443 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
{ RR ,  CC }  /\  F  e.  ( CC  ^pm  S )
)  /\  x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
) )  /\  z  e.  { w  e.  dom  F  |  w #  x }
)  ->  ( (
( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) )  e.  CC )
3029fmpttd 5651 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  -> 
( z  e.  {
w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) : { w  e.  dom  F  |  w #  x } --> CC )
31 ssrab2 3232 . . . . . . . . . 10  |-  { w  e.  dom  F  |  w #  x }  C_  dom  F
3231, 12sstrid 3158 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  { w  e.  dom  F  |  w #  x }  C_  CC )
3312, 28sseldd 3148 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  x  e.  CC )
34 simpr 109 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )
3527, 9sstrd 3157 . . . . . . . . . 10  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  C_  S )
3635sselda 3147 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  x  e.  S )
3719adantr 274 . . . . . . . . . 10  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  -> 
( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top )
3824adantr 274 . . . . . . . . . 10  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  dom  F  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )
3925ntropn 12911 . . . . . . . . . 10  |-  ( ( ( ( MetOpen `  ( abs  o.  -  ) )t  S )  e.  Top  /\  dom  F  C_  U. (
( MetOpen `  ( abs  o. 
-  ) )t  S ) )  ->  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F )  e.  ( ( MetOpen `  ( abs  o. 
-  ) )t  S ) )
4037, 38, 39syl2anc 409 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  -> 
( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  e.  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) )
41 simpll 524 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  S  e.  { RR ,  CC } )
42 rabss2 3230 . . . . . . . . . . 11  |-  ( ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  C_  dom  F  ->  { w  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  |  w #  x }  C_  { w  e. 
dom  F  |  w #  x } )
4327, 42syl 14 . . . . . . . . . 10  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  { w  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  |  w #  x }  C_  { w  e. 
dom  F  |  w #  x } )
4443adantr 274 . . . . . . . . 9  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  { w  e.  (
( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  |  w #  x }  C_  { w  e. 
dom  F  |  w #  x } )
4530, 32, 33, 34, 36, 40, 41, 44, 13limcimo 13428 . . . . . . . 8  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x  e.  ( ( int `  ( ( MetOpen `  ( abs  o.  -  )
)t 
S ) ) `  dom  F ) )  ->  E* y  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
4645ex 114 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
x  e.  ( ( int `  ( (
MetOpen `  ( abs  o.  -  ) )t  S ) ) `  dom  F
)  ->  E* y 
y  e.  ( ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
47 moanimv 2094 . . . . . . 7  |-  ( E* y ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  /\  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  <->  ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  ->  E* y 
y  e.  ( ( z  e.  { w  e.  dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
4846, 47sylibr 133 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  E* y ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  /\  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
49 eqid 2170 . . . . . . . 8  |-  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  =  ( ( MetOpen `  ( abs  o.  -  )
)t 
S )
50 eqid 2170 . . . . . . . 8  |-  ( z  e.  { w  e. 
dom  F  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )  =  ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) )
5149, 13, 50, 10, 6, 9eldvap 13445 . . . . . . 7  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
x ( S  _D  F ) y  <->  ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  /\  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) ) )
5251mobidv 2055 . . . . . 6  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( E* y  x ( S  _D  F ) y  <->  E* y ( x  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  dom  F
)  /\  y  e.  ( ( z  e. 
{ w  e.  dom  F  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) ) )
5348, 52mpbird 166 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  E* y  x ( S  _D  F ) y )
5453alrimiv 1867 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  A. x E* y  x ( S  _D  F ) y )
55 dffun6 5212 . . . 4  |-  ( Fun  ( S  _D  F
)  <->  ( Rel  ( S  _D  F )  /\  A. x E* y  x ( S  _D  F
) y ) )
563, 54, 55sylanbrc 415 . . 3  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  Fun  ( S  _D  F
) )
5756funfnd 5229 . 2  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F )  Fn 
dom  ( S  _D  F ) )
58 vex 2733 . . . . 5  |-  y  e. 
_V
5958elrn 4854 . . . 4  |-  ( y  e.  ran  ( S  _D  F )  <->  E. x  x ( S  _D  F ) y )
6010, 6, 9dvcl 13446 . . . . . 6  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  x ( S  _D  F ) y )  ->  y  e.  CC )
6160ex 114 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
x ( S  _D  F ) y  -> 
y  e.  CC ) )
6261exlimdv 1812 . . . 4  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( E. x  x ( S  _D  F ) y  ->  y  e.  CC ) )
6359, 62syl5bi 151 . . 3  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  (
y  e.  ran  ( S  _D  F )  -> 
y  e.  CC ) )
6463ssrdv 3153 . 2  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ran  ( S  _D  F
)  C_  CC )
65 df-f 5202 . 2  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC  <->  ( ( S  _D  F
)  Fn  dom  ( S  _D  F )  /\  ran  ( S  _D  F
)  C_  CC )
)
6657, 64, 65sylanbrc 415 1  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485   E*wmo 2020    e. wcel 2141   {crab 2452    C_ wss 3121   {cpr 3584   U.cuni 3796   class class class wbr 3989    |-> cmpt 4050   dom cdm 4611   ran crn 4612    o. ccom 4615   Rel wrel 4616   Fun wfun 5192    Fn wfn 5193   -->wf 5194   ` cfv 5198  (class class class)co 5853    ^pm cpm 6627   CCcc 7772   RRcr 7773    - cmin 8090   # cap 8500    / cdiv 8589   abscabs 10961   ↾t crest 12579   MetOpencmopn 12779   Topctop 12789  TopOnctopon 12802   intcnt 12887   lim CC climc 13417    _D cdv 13418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-pm 6629  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-limced 13419  df-dvap 13420
This theorem is referenced by:  dvfpm  13452  dvfcnpm  13453  dvaddxx  13461  dvmulxx  13462  dviaddf  13463  dvimulf  13464  dvmptclx  13474
  Copyright terms: Public domain W3C validator