ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funforn Unicode version

Theorem funforn 5417
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn  |-  ( Fun 
A  <->  A : dom  A -onto-> ran  A )

Proof of Theorem funforn
StepHypRef Expression
1 funfn 5218 . 2  |-  ( Fun 
A  <->  A  Fn  dom  A )
2 dffn4 5416 . 2  |-  ( A  Fn  dom  A  <->  A : dom  A -onto-> ran  A )
31, 2bitri 183 1  |-  ( Fun 
A  <->  A : dom  A -onto-> ran  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   dom cdm 4604   ran crn 4605   Fun wfun 5182    Fn wfn 5183   -onto->wfo 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1437  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-fn 5191  df-fo 5194
This theorem is referenced by:  dvrecap  13317
  Copyright terms: Public domain W3C validator