ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funforn Unicode version

Theorem funforn 5557
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn  |-  ( Fun 
A  <->  A : dom  A -onto-> ran  A )

Proof of Theorem funforn
StepHypRef Expression
1 funfn 5348 . 2  |-  ( Fun 
A  <->  A  Fn  dom  A )
2 dffn4 5556 . 2  |-  ( A  Fn  dom  A  <->  A : dom  A -onto-> ran  A )
31, 2bitri 184 1  |-  ( Fun 
A  <->  A : dom  A -onto-> ran  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   dom cdm 4719   ran crn 4720   Fun wfun 5312    Fn wfn 5313   -onto->wfo 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-fn 5321  df-fo 5324
This theorem is referenced by:  dvrecap  15395
  Copyright terms: Public domain W3C validator