ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funforn Unicode version

Theorem funforn 5288
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn  |-  ( Fun 
A  <->  A : dom  A -onto-> ran  A )

Proof of Theorem funforn
StepHypRef Expression
1 funfn 5089 . 2  |-  ( Fun 
A  <->  A  Fn  dom  A )
2 dffn4 5287 . 2  |-  ( A  Fn  dom  A  <->  A : dom  A -onto-> ran  A )
31, 2bitri 183 1  |-  ( Fun 
A  <->  A : dom  A -onto-> ran  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   dom cdm 4477   ran crn 4478   Fun wfun 5053    Fn wfn 5054   -onto->wfo 5057
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1393  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-cleq 2093  df-fn 5062  df-fo 5065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator