| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > funforn | GIF version | ||
| Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.) | 
| Ref | Expression | 
|---|---|
| funforn | ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funfn 5288 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
| 2 | dffn4 5486 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 dom cdm 4663 ran crn 4664 Fun wfun 5252 Fn wfn 5253 –onto→wfo 5256 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-fn 5261 df-fo 5264 | 
| This theorem is referenced by: dvrecap 14949 | 
| Copyright terms: Public domain | W3C validator |