ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrecap Unicode version

Theorem dvrecap 14949
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrecap  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) )  =  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  -u ( A  /  ( x ^
2 ) ) ) )
Distinct variable group:    x, w, A

Proof of Theorem dvrecap
Dummy variables  y  z  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 5296 . . . . . . . . 9  |-  Fun  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )
2 funforn 5487 . . . . . . . . 9  |-  ( Fun  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  <-> 
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) -onto-> ran  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )
31, 2mpbi 145 . . . . . . . 8  |-  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) -onto-> ran  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )
4 fof 5480 . . . . . . . 8  |-  ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) -onto-> ran  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  -> 
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) --> ran  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )
53, 4ax-mp 5 . . . . . . 7  |-  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) --> ran  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )
6 simpl 109 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  A  e.  CC )
7 breq1 4036 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  (
w #  0  <->  x #  0
) )
87elrab 2920 . . . . . . . . . . . . 13  |-  ( x  e.  { w  e.  CC  |  w #  0 }  <->  ( x  e.  CC  /\  x #  0 ) )
98biimpi 120 . . . . . . . . . . . 12  |-  ( x  e.  { w  e.  CC  |  w #  0 }  ->  ( x  e.  CC  /\  x #  0 ) )
109adantl 277 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  (
x  e.  CC  /\  x #  0 ) )
1110simpld 112 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  x  e.  CC )
1210simprd 114 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  x #  0 )
136, 11, 12divclapd 8817 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  x )  e.  CC )
1413ralrimiva 2570 . . . . . . . 8  |-  ( A  e.  CC  ->  A. x  e.  { w  e.  CC  |  w #  0 } 
( A  /  x
)  e.  CC )
15 eqid 2196 . . . . . . . . 9  |-  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  =  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )
1615rnmptss 5723 . . . . . . . 8  |-  ( A. x  e.  { w  e.  CC  |  w #  0 }  ( A  /  x )  e.  CC  ->  ran  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) )  C_  CC )
1714, 16syl 14 . . . . . . 7  |-  ( A  e.  CC  ->  ran  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  C_  CC )
18 fss 5419 . . . . . . 7  |-  ( ( ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) --> ran  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  /\  ran  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  C_  CC )  ->  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) --> CC )
195, 17, 18sylancr 414 . . . . . 6  |-  ( A  e.  CC  ->  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) --> CC )
2015dmmpt 5165 . . . . . . 7  |-  dom  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  =  { x  e.  {
w  e.  CC  |  w #  0 }  |  ( A  /  x )  e.  _V }
21 ssrab2 3268 . . . . . . . 8  |-  { x  e.  { w  e.  CC  |  w #  0 }  |  ( A  /  x )  e.  _V }  C_  { w  e.  CC  |  w #  0 }
22 ssrab2 3268 . . . . . . . 8  |-  { w  e.  CC  |  w #  0 }  C_  CC
2321, 22sstri 3192 . . . . . . 7  |-  { x  e.  { w  e.  CC  |  w #  0 }  |  ( A  /  x )  e.  _V }  C_  CC
2420, 23eqsstri 3215 . . . . . 6  |-  dom  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  C_  CC
25 cnex 8003 . . . . . . 7  |-  CC  e.  _V
2625, 25elpm2 6739 . . . . . 6  |-  ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  e.  ( CC  ^pm  CC ) 
<->  ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) : dom  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) --> CC 
/\  dom  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x
) )  C_  CC ) )
2719, 24, 26sylanblrc 416 . . . . 5  |-  ( A  e.  CC  ->  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  e.  ( CC  ^pm  CC ) )
28 dvfcnpm 14926 . . . . 5  |-  ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  e.  ( CC  ^pm  CC )  ->  ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) : dom  ( CC 
_D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) ) --> CC )
2927, 28syl 14 . . . 4  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) ) : dom  ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) --> CC )
30 ssidd 3204 . . . . . . 7  |-  ( A  e.  CC  ->  CC  C_  CC )
31 divclap 8705 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  x #  0 )  ->  ( A  /  x )  e.  CC )
32313expb 1206 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  x #  0 ) )  ->  ( A  /  x )  e.  CC )
338, 32sylan2b 287 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  x )  e.  CC )
3433fmpttd 5717 . . . . . . 7  |-  ( A  e.  CC  ->  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : { w  e.  CC  |  w #  0 } --> CC )
3522a1i 9 . . . . . . 7  |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  0 }  C_  CC )
3630, 34, 35dvbss 14921 . . . . . 6  |-  ( A  e.  CC  ->  dom  ( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) 
C_  { w  e.  CC  |  w #  0 } )
37 elrabi 2917 . . . . . . . 8  |-  ( y  e.  { w  e.  CC  |  w #  0 }  ->  y  e.  CC )
3837adantl 277 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  y  e.  CC )
39 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  A  e.  CC )
4038sqcld 10763 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
y ^ 2 )  e.  CC )
41 breq1 4036 . . . . . . . . . . . . 13  |-  ( w  =  y  ->  (
w #  0  <->  y #  0
) )
4241elrab 2920 . . . . . . . . . . . 12  |-  ( y  e.  { w  e.  CC  |  w #  0 }  <->  ( y  e.  CC  /\  y #  0 ) )
4342simprbi 275 . . . . . . . . . . 11  |-  ( y  e.  { w  e.  CC  |  w #  0 }  ->  y #  0
)
4443adantl 277 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  y #  0 )
45 sqap0 10698 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  (
( y ^ 2 ) #  0  <->  y #  0
) )
4638, 45syl 14 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( y ^ 2 ) #  0  <->  y #  0
) )
4744, 46mpbird 167 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
y ^ 2 ) #  0 )
4839, 40, 47divclapd 8817 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  ( y ^
2 ) )  e.  CC )
4948negcld 8324 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  ( y ^
2 ) )  e.  CC )
50 simpr 110 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  y  e.  { w  e.  CC  |  w #  0 }
)
51 eqid 2196 . . . . . . . . . . 11  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
5251cntoptop 14769 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  Top
53 0cn 8018 . . . . . . . . . . 11  |-  0  e.  CC
54 cnopnap 14847 . . . . . . . . . . 11  |-  ( 0  e.  CC  ->  { w  e.  CC  |  w #  0 }  e.  ( MetOpen `  ( abs  o.  -  )
) )
5553, 54ax-mp 5 . . . . . . . . . 10  |-  { w  e.  CC  |  w #  0 }  e.  ( MetOpen `  ( abs  o.  -  )
)
56 isopn3i 14371 . . . . . . . . . 10  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e. 
Top  /\  { w  e.  CC  |  w #  0 }  e.  ( MetOpen `  ( abs  o.  -  )
) )  ->  (
( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 { w  e.  CC  |  w #  0 } )  =  {
w  e.  CC  |  w #  0 } )
5752, 55, 56mp2an 426 . . . . . . . . 9  |-  ( ( int `  ( MetOpen `  ( abs  o.  -  )
) ) `  {
w  e.  CC  |  w #  0 } )  =  { w  e.  CC  |  w #  0 }
5850, 57eleqtrrdi 2290 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  y  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 { w  e.  CC  |  w #  0 } ) )
5938sqvald 10762 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
y ^ 2 )  =  ( y  x.  y ) )
6059oveq2d 5938 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  ( y ^
2 ) )  =  ( A  /  (
y  x.  y ) ) )
6139, 38, 38, 44, 44divdivap1d 8849 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( A  /  y
)  /  y )  =  ( A  / 
( y  x.  y
) ) )
6260, 61eqtr4d 2232 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  ( y ^
2 ) )  =  ( ( A  / 
y )  /  y
) )
6362negeqd 8221 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  ( y ^
2 ) )  = 
-u ( ( A  /  y )  / 
y ) )
6439, 38, 44divclapd 8817 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  y )  e.  CC )
6564, 38, 44divnegapd 8830 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u (
( A  /  y
)  /  y )  =  ( -u ( A  /  y )  / 
y ) )
6663, 65eqtrd 2229 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  ( y ^
2 ) )  =  ( -u ( A  /  y )  / 
y ) )
6764negcld 8324 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  y )  e.  CC )
68 eqid 2196 . . . . . . . . . . . . 13  |-  ( z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  =  ( z  e.  {
w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y
)  /  z ) )
6968cdivcncfap 14840 . . . . . . . . . . . 12  |-  ( -u ( A  /  y
)  e.  CC  ->  ( z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( { w  e.  CC  |  w #  0 } -cn-> CC ) )
7067, 69syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( { w  e.  CC  |  w #  0 } -cn-> CC ) )
71 oveq2 5930 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( -u ( A  /  y
)  /  z )  =  ( -u ( A  /  y )  / 
y ) )
7270, 50, 71cnmptlimc 14910 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  ( -u ( A  /  y
)  /  y )  e.  ( ( z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) ) lim CC  y ) )
7366, 72eqeltrd 2273 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e. 
{ w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) ) lim CC  y ) )
74 cncff 14813 . . . . . . . . . . . 12  |-  ( ( z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( { w  e.  CC  |  w #  0 } -cn-> CC )  ->  (
z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) ) : { w  e.  CC  |  w #  0 } --> CC )
7570, 74syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) ) : { w  e.  CC  |  w #  0 } --> CC )
7622a1i 9 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  { w  e.  CC  |  w #  0 }  C_  CC )
7775, 76limcdifap 14898 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( z  e.  {
w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y
)  /  z ) ) lim CC  y )  =  ( ( ( z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  |`  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } ) lim CC  y ) )
78 elrabi 2917 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  { k  e. 
{ w  e.  CC  |  w #  0 }  |  k #  y }  ->  z  e.  { w  e.  CC  |  w #  0 } )
7978adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
z  e.  { w  e.  CC  |  w #  0 } )
80 breq1 4036 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  z  ->  (
w #  0  <->  z #  0
) )
8180elrab 2920 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  { w  e.  CC  |  w #  0 }  <->  ( z  e.  CC  /\  z #  0 ) )
8279, 81sylib 122 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( z  e.  CC  /\  z #  0 ) )
8382simpld 112 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
z  e.  CC )
8437ad2antlr 489 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
y  e.  CC )
8583, 84subcld 8337 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( z  -  y
)  e.  CC )
8664adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( A  /  y
)  e.  CC )
8781simprbi 275 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  { w  e.  CC  |  w #  0 }  ->  z #  0
)
8879, 87syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
z #  0 )
8986, 83, 88divclapd 8817 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( A  / 
y )  /  z
)  e.  CC )
90 mulneg12 8423 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  -  y
)  e.  CC  /\  ( ( A  / 
y )  /  z
)  e.  CC )  ->  ( -u (
z  -  y )  x.  ( ( A  /  y )  / 
z ) )  =  ( ( z  -  y )  x.  -u (
( A  /  y
)  /  z ) ) )
9185, 89, 90syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( -u ( z  -  y )  x.  (
( A  /  y
)  /  z ) )  =  ( ( z  -  y )  x.  -u ( ( A  /  y )  / 
z ) ) )
9284, 83, 89subdird 8441 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( y  -  z )  x.  (
( A  /  y
)  /  z ) )  =  ( ( y  x.  ( ( A  /  y )  /  z ) )  -  ( z  x.  ( ( A  / 
y )  /  z
) ) ) )
9383, 84negsubdi2d 8353 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  ->  -u ( z  -  y
)  =  ( y  -  z ) )
9493oveq1d 5937 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( -u ( z  -  y )  x.  (
( A  /  y
)  /  z ) )  =  ( ( y  -  z )  x.  ( ( A  /  y )  / 
z ) ) )
95 oveq2 5930 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( A  /  x )  =  ( A  /  z
) )
96 simpll 527 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  ->  A  e.  CC )
9796, 83, 88divclapd 8817 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( A  /  z
)  e.  CC )
9815, 95, 79, 97fvmptd3 5655 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  z
)  =  ( A  /  z ) )
9943ad2antlr 489 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
y #  0 )
10096, 84, 99divcanap2d 8819 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( y  x.  ( A  /  y ) )  =  A )
101100oveq1d 5937 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( y  x.  ( A  /  y
) )  /  z
)  =  ( A  /  z ) )
10284, 86, 83, 88divassapd 8853 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( y  x.  ( A  /  y
) )  /  z
)  =  ( y  x.  ( ( A  /  y )  / 
z ) ) )
10398, 101, 1023eqtr2d 2235 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  z
)  =  ( y  x.  ( ( A  /  y )  / 
z ) ) )
104 oveq2 5930 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  y  ->  ( A  /  x )  =  ( A  /  y
) )
10550adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
y  e.  { w  e.  CC  |  w #  0 } )
10615, 104, 105, 86fvmptd3 5655 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  y
)  =  ( A  /  y ) )
10786, 83, 88divcanap2d 8819 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( z  x.  (
( A  /  y
)  /  z ) )  =  ( A  /  y ) )
108106, 107eqtr4d 2232 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  y
)  =  ( z  x.  ( ( A  /  y )  / 
z ) ) )
109103, 108oveq12d 5940 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 y ) )  =  ( ( y  x.  ( ( A  /  y )  / 
z ) )  -  ( z  x.  (
( A  /  y
)  /  z ) ) ) )
11092, 94, 1093eqtr4d 2239 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( -u ( z  -  y )  x.  (
( A  /  y
)  /  z ) )  =  ( ( ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  y
) ) )
11186, 83, 88divnegapd 8830 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  ->  -u ( ( A  / 
y )  /  z
)  =  ( -u ( A  /  y
)  /  z ) )
112111oveq2d 5938 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( z  -  y )  x.  -u (
( A  /  y
)  /  z ) )  =  ( ( z  -  y )  x.  ( -u ( A  /  y )  / 
z ) ) )
11391, 110, 1123eqtr3d 2237 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 y ) )  =  ( ( z  -  y )  x.  ( -u ( A  /  y )  / 
z ) ) )
114113oveq1d 5937 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 y ) )  /  ( z  -  y ) )  =  ( ( ( z  -  y )  x.  ( -u ( A  /  y )  / 
z ) )  / 
( z  -  y
) ) )
11586negcld 8324 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  ->  -u ( A  /  y
)  e.  CC )
116115, 83, 88divclapd 8817 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( -u ( A  / 
y )  /  z
)  e.  CC )
117 breq1 4036 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  z  ->  (
k #  y  <->  z #  y
) )
118117elrab 2920 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  { k  e. 
{ w  e.  CC  |  w #  0 }  |  k #  y }  <->  ( z  e.  { w  e.  CC  |  w #  0 }  /\  z #  y ) )
119118simprbi 275 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  { k  e. 
{ w  e.  CC  |  w #  0 }  |  k #  y }  ->  z #  y )
120119adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
z #  y )
12183, 84, 120subap0d 8671 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( z  -  y
) #  0 )
122116, 85, 121divcanap3d 8822 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( ( z  -  y )  x.  ( -u ( A  /  y )  / 
z ) )  / 
( z  -  y
) )  =  (
-u ( A  / 
y )  /  z
) )
123114, 122eqtrd 2229 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 y ) )  /  ( z  -  y ) )  =  ( -u ( A  /  y )  / 
z ) )
124123mpteq2dva 4123 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
z  e.  { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  y
) )  /  (
z  -  y ) ) )  =  ( z  e.  { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( -u ( A  /  y )  / 
z ) ) )
125 ssrab2 3268 . . . . . . . . . . . . 13  |-  { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  C_  { w  e.  CC  |  w #  0 }
126 resmpt 4994 . . . . . . . . . . . . 13  |-  ( { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  C_  { w  e.  CC  |  w #  0 }  ->  ( (
z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  |`  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  =  ( z  e.  {
k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( -u ( A  /  y )  / 
z ) ) )
127125, 126ax-mp 5 . . . . . . . . . . . 12  |-  ( ( z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  |`  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  =  ( z  e.  {
k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( -u ( A  /  y )  / 
z ) )
128124, 127eqtr4di 2247 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
z  e.  { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  y
) )  /  (
z  -  y ) ) )  =  ( ( z  e.  {
w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y
)  /  z ) )  |`  { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }
) )
129128oveq1d 5937 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( z  e.  {
k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  y
) )  /  (
z  -  y ) ) ) lim CC  y
)  =  ( ( ( z  e.  {
w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y
)  /  z ) )  |`  { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }
) lim CC  y )
)
13077, 129eqtr4d 2232 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( z  e.  {
w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y
)  /  z ) ) lim CC  y )  =  ( ( z  e.  { k  e. 
{ w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 y ) )  /  ( z  -  y ) ) ) lim
CC  y ) )
13173, 130eleqtrd 2275 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e. 
{ k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) ) lim CC  y ) )
13251cntoptopon 14768 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
133132toponrestid 14257 . . . . . . . . 9  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
134 eqid 2196 . . . . . . . . 9  |-  ( z  e.  { k  e. 
{ w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 y ) )  /  ( z  -  y ) ) )  =  ( z  e. 
{ k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) )
135 ssidd 3204 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  CC  C_  CC )
13634adantr 276 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : { w  e.  CC  |  w #  0 } --> CC )
137133, 51, 134, 135, 136, 76eldvap 14918 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
y ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) )  <->  ( y  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 { w  e.  CC  |  w #  0 } )  /\  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e. 
{ k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) ) lim CC  y ) ) ) )
13858, 131, 137mpbir2and 946 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  y
( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) ) )
139 breldmg 4872 . . . . . . 7  |-  ( ( y  e.  CC  /\  -u ( A  /  (
y ^ 2 ) )  e.  CC  /\  y ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) ) )  -> 
y  e.  dom  ( CC  _D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) ) )
14038, 49, 138, 139syl3anc 1249 . . . . . 6  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  y  e.  dom  ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) )
14136, 140eqelssd 3202 . . . . 5  |-  ( A  e.  CC  ->  dom  ( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )  =  { w  e.  CC  |  w #  0 } )
142141feq2d 5395 . . . 4  |-  ( A  e.  CC  ->  (
( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) : dom  ( CC 
_D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) ) --> CC  <->  ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) : { w  e.  CC  |  w #  0 } --> CC ) )
14329, 142mpbid 147 . . 3  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) ) : { w  e.  CC  |  w #  0 } --> CC )
144143ffnd 5408 . 2  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) )  Fn 
{ w  e.  CC  |  w #  0 }
)
14511sqcld 10763 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  (
x ^ 2 )  e.  CC )
146 sqap0 10698 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( x ^ 2 ) #  0  <->  x #  0
) )
14711, 146syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  (
( x ^ 2 ) #  0  <->  x #  0
) )
14812, 147mpbird 167 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  (
x ^ 2 ) #  0 )
1496, 145, 148divclapd 8817 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  ( x ^
2 ) )  e.  CC )
150149negcld 8324 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  ( x ^
2 ) )  e.  CC )
151150ralrimiva 2570 . . 3  |-  ( A  e.  CC  ->  A. x  e.  { w  e.  CC  |  w #  0 } -u ( A  /  (
x ^ 2 ) )  e.  CC )
152 eqid 2196 . . . 4  |-  ( x  e.  { w  e.  CC  |  w #  0 }  |->  -u ( A  / 
( x ^ 2 ) ) )  =  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  -u ( A  /  ( x ^
2 ) ) )
153152fnmpt 5384 . . 3  |-  ( A. x  e.  { w  e.  CC  |  w #  0 } -u ( A  /  ( x ^
2 ) )  e.  CC  ->  ( x  e.  { w  e.  CC  |  w #  0 }  |-> 
-u ( A  / 
( x ^ 2 ) ) )  Fn 
{ w  e.  CC  |  w #  0 }
)
154151, 153syl 14 . 2  |-  ( A  e.  CC  ->  (
x  e.  { w  e.  CC  |  w #  0 }  |->  -u ( A  / 
( x ^ 2 ) ) )  Fn 
{ w  e.  CC  |  w #  0 }
)
15529ffund 5411 . . . . 5  |-  ( A  e.  CC  ->  Fun  ( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) )
156155adantr 276 . . . 4  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  Fun  ( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) )
157 funbrfv 5599 . . . 4  |-  ( Fun  ( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )  ->  ( y ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) )  ->  (
( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) `
 y )  = 
-u ( A  / 
( y ^ 2 ) ) ) )
158156, 138, 157sylc 62 . . 3  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) `
 y )  = 
-u ( A  / 
( y ^ 2 ) ) )
159 oveq1 5929 . . . . . 6  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
160159oveq2d 5938 . . . . 5  |-  ( x  =  y  ->  ( A  /  ( x ^
2 ) )  =  ( A  /  (
y ^ 2 ) ) )
161160negeqd 8221 . . . 4  |-  ( x  =  y  ->  -u ( A  /  ( x ^
2 ) )  = 
-u ( A  / 
( y ^ 2 ) ) )
162152, 161, 50, 49fvmptd3 5655 . . 3  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  -u ( A  /  ( x ^
2 ) ) ) `
 y )  = 
-u ( A  / 
( y ^ 2 ) ) )
163158, 162eqtr4d 2232 . 2  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) `
 y )  =  ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |-> 
-u ( A  / 
( x ^ 2 ) ) ) `  y ) )
164144, 154, 163eqfnfvd 5662 1  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) )  =  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  -u ( A  /  ( x ^
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   _Vcvv 2763    C_ wss 3157   class class class wbr 4033    |-> cmpt 4094   dom cdm 4663   ran crn 4664    |` cres 4665    o. ccom 4667   Fun wfun 5252    Fn wfn 5253   -->wf 5254   -onto->wfo 5256   ` cfv 5258  (class class class)co 5922    ^pm cpm 6708   CCcc 7877   0cc0 7879    x. cmul 7884    - cmin 8197   -ucneg 8198   # cap 8608    / cdiv 8699   2c2 9041   ^cexp 10630   abscabs 11162   MetOpencmopn 14097   Topctop 14233   intcnt 14329   -cn->ccncf 14806   lim CC climc 14890    _D cdv 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pm 6710  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-cncf 14807  df-limced 14892  df-dvap 14893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator