ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrecap Unicode version

Theorem dvrecap 13471
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrecap  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) )  =  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  -u ( A  /  ( x ^
2 ) ) ) )
Distinct variable group:    x, w, A

Proof of Theorem dvrecap
Dummy variables  y  z  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 5236 . . . . . . . . 9  |-  Fun  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )
2 funforn 5427 . . . . . . . . 9  |-  ( Fun  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  <-> 
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) -onto-> ran  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )
31, 2mpbi 144 . . . . . . . 8  |-  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) -onto-> ran  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )
4 fof 5420 . . . . . . . 8  |-  ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) -onto-> ran  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  -> 
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) --> ran  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )
53, 4ax-mp 5 . . . . . . 7  |-  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) --> ran  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )
6 simpl 108 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  A  e.  CC )
7 breq1 3992 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  (
w #  0  <->  x #  0
) )
87elrab 2886 . . . . . . . . . . . . 13  |-  ( x  e.  { w  e.  CC  |  w #  0 }  <->  ( x  e.  CC  /\  x #  0 ) )
98biimpi 119 . . . . . . . . . . . 12  |-  ( x  e.  { w  e.  CC  |  w #  0 }  ->  ( x  e.  CC  /\  x #  0 ) )
109adantl 275 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  (
x  e.  CC  /\  x #  0 ) )
1110simpld 111 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  x  e.  CC )
1210simprd 113 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  x #  0 )
136, 11, 12divclapd 8707 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  x )  e.  CC )
1413ralrimiva 2543 . . . . . . . 8  |-  ( A  e.  CC  ->  A. x  e.  { w  e.  CC  |  w #  0 } 
( A  /  x
)  e.  CC )
15 eqid 2170 . . . . . . . . 9  |-  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  =  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )
1615rnmptss 5657 . . . . . . . 8  |-  ( A. x  e.  { w  e.  CC  |  w #  0 }  ( A  /  x )  e.  CC  ->  ran  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) )  C_  CC )
1714, 16syl 14 . . . . . . 7  |-  ( A  e.  CC  ->  ran  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  C_  CC )
18 fss 5359 . . . . . . 7  |-  ( ( ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) --> ran  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  /\  ran  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  C_  CC )  ->  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) --> CC )
195, 17, 18sylancr 412 . . . . . 6  |-  ( A  e.  CC  ->  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : dom  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) --> CC )
2015dmmpt 5106 . . . . . . 7  |-  dom  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  =  { x  e.  {
w  e.  CC  |  w #  0 }  |  ( A  /  x )  e.  _V }
21 ssrab2 3232 . . . . . . . 8  |-  { x  e.  { w  e.  CC  |  w #  0 }  |  ( A  /  x )  e.  _V }  C_  { w  e.  CC  |  w #  0 }
22 ssrab2 3232 . . . . . . . 8  |-  { w  e.  CC  |  w #  0 }  C_  CC
2321, 22sstri 3156 . . . . . . 7  |-  { x  e.  { w  e.  CC  |  w #  0 }  |  ( A  /  x )  e.  _V }  C_  CC
2420, 23eqsstri 3179 . . . . . 6  |-  dom  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  C_  CC
25 cnex 7898 . . . . . . 7  |-  CC  e.  _V
2625, 25elpm2 6658 . . . . . 6  |-  ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  e.  ( CC  ^pm  CC ) 
<->  ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) : dom  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) --> CC 
/\  dom  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x
) )  C_  CC ) )
2719, 24, 26sylanblrc 414 . . . . 5  |-  ( A  e.  CC  ->  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  e.  ( CC  ^pm  CC ) )
28 dvfcnpm 13453 . . . . 5  |-  ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) )  e.  ( CC  ^pm  CC )  ->  ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) : dom  ( CC 
_D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) ) --> CC )
2927, 28syl 14 . . . 4  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) ) : dom  ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) --> CC )
30 ssidd 3168 . . . . . . 7  |-  ( A  e.  CC  ->  CC  C_  CC )
31 divclap 8595 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  x #  0 )  ->  ( A  /  x )  e.  CC )
32313expb 1199 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  x #  0 ) )  ->  ( A  /  x )  e.  CC )
338, 32sylan2b 285 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  x )  e.  CC )
3433fmpttd 5651 . . . . . . 7  |-  ( A  e.  CC  ->  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : { w  e.  CC  |  w #  0 } --> CC )
3522a1i 9 . . . . . . 7  |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  0 }  C_  CC )
3630, 34, 35dvbss 13448 . . . . . 6  |-  ( A  e.  CC  ->  dom  ( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) 
C_  { w  e.  CC  |  w #  0 } )
37 elrabi 2883 . . . . . . . 8  |-  ( y  e.  { w  e.  CC  |  w #  0 }  ->  y  e.  CC )
3837adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  y  e.  CC )
39 simpl 108 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  A  e.  CC )
4038sqcld 10607 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
y ^ 2 )  e.  CC )
41 breq1 3992 . . . . . . . . . . . . 13  |-  ( w  =  y  ->  (
w #  0  <->  y #  0
) )
4241elrab 2886 . . . . . . . . . . . 12  |-  ( y  e.  { w  e.  CC  |  w #  0 }  <->  ( y  e.  CC  /\  y #  0 ) )
4342simprbi 273 . . . . . . . . . . 11  |-  ( y  e.  { w  e.  CC  |  w #  0 }  ->  y #  0
)
4443adantl 275 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  y #  0 )
45 sqap0 10542 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  (
( y ^ 2 ) #  0  <->  y #  0
) )
4638, 45syl 14 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( y ^ 2 ) #  0  <->  y #  0
) )
4744, 46mpbird 166 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
y ^ 2 ) #  0 )
4839, 40, 47divclapd 8707 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  ( y ^
2 ) )  e.  CC )
4948negcld 8217 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  ( y ^
2 ) )  e.  CC )
50 simpr 109 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  y  e.  { w  e.  CC  |  w #  0 }
)
51 eqid 2170 . . . . . . . . . . 11  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
5251cntoptop 13327 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  Top
53 0cn 7912 . . . . . . . . . . 11  |-  0  e.  CC
54 cnopnap 13388 . . . . . . . . . . 11  |-  ( 0  e.  CC  ->  { w  e.  CC  |  w #  0 }  e.  ( MetOpen `  ( abs  o.  -  )
) )
5553, 54ax-mp 5 . . . . . . . . . 10  |-  { w  e.  CC  |  w #  0 }  e.  ( MetOpen `  ( abs  o.  -  )
)
56 isopn3i 12929 . . . . . . . . . 10  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e. 
Top  /\  { w  e.  CC  |  w #  0 }  e.  ( MetOpen `  ( abs  o.  -  )
) )  ->  (
( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 { w  e.  CC  |  w #  0 } )  =  {
w  e.  CC  |  w #  0 } )
5752, 55, 56mp2an 424 . . . . . . . . 9  |-  ( ( int `  ( MetOpen `  ( abs  o.  -  )
) ) `  {
w  e.  CC  |  w #  0 } )  =  { w  e.  CC  |  w #  0 }
5850, 57eleqtrrdi 2264 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  y  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 { w  e.  CC  |  w #  0 } ) )
5938sqvald 10606 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
y ^ 2 )  =  ( y  x.  y ) )
6059oveq2d 5869 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  ( y ^
2 ) )  =  ( A  /  (
y  x.  y ) ) )
6139, 38, 38, 44, 44divdivap1d 8739 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( A  /  y
)  /  y )  =  ( A  / 
( y  x.  y
) ) )
6260, 61eqtr4d 2206 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  ( y ^
2 ) )  =  ( ( A  / 
y )  /  y
) )
6362negeqd 8114 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  ( y ^
2 ) )  = 
-u ( ( A  /  y )  / 
y ) )
6439, 38, 44divclapd 8707 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  y )  e.  CC )
6564, 38, 44divnegapd 8720 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u (
( A  /  y
)  /  y )  =  ( -u ( A  /  y )  / 
y ) )
6663, 65eqtrd 2203 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  ( y ^
2 ) )  =  ( -u ( A  /  y )  / 
y ) )
6764negcld 8217 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  y )  e.  CC )
68 eqid 2170 . . . . . . . . . . . . 13  |-  ( z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  =  ( z  e.  {
w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y
)  /  z ) )
6968cdivcncfap 13381 . . . . . . . . . . . 12  |-  ( -u ( A  /  y
)  e.  CC  ->  ( z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( { w  e.  CC  |  w #  0 } -cn-> CC ) )
7067, 69syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( { w  e.  CC  |  w #  0 } -cn-> CC ) )
71 oveq2 5861 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( -u ( A  /  y
)  /  z )  =  ( -u ( A  /  y )  / 
y ) )
7270, 50, 71cnmptlimc 13437 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  ( -u ( A  /  y
)  /  y )  e.  ( ( z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) ) lim CC  y ) )
7366, 72eqeltrd 2247 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e. 
{ w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) ) lim CC  y ) )
74 cncff 13358 . . . . . . . . . . . 12  |-  ( ( z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( { w  e.  CC  |  w #  0 } -cn-> CC )  ->  (
z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) ) : { w  e.  CC  |  w #  0 } --> CC )
7570, 74syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) ) : { w  e.  CC  |  w #  0 } --> CC )
7622a1i 9 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  { w  e.  CC  |  w #  0 }  C_  CC )
7775, 76limcdifap 13425 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( z  e.  {
w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y
)  /  z ) ) lim CC  y )  =  ( ( ( z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  |`  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } ) lim CC  y ) )
78 elrabi 2883 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  { k  e. 
{ w  e.  CC  |  w #  0 }  |  k #  y }  ->  z  e.  { w  e.  CC  |  w #  0 } )
7978adantl 275 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
z  e.  { w  e.  CC  |  w #  0 } )
80 breq1 3992 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  z  ->  (
w #  0  <->  z #  0
) )
8180elrab 2886 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  { w  e.  CC  |  w #  0 }  <->  ( z  e.  CC  /\  z #  0 ) )
8279, 81sylib 121 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( z  e.  CC  /\  z #  0 ) )
8382simpld 111 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
z  e.  CC )
8437ad2antlr 486 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
y  e.  CC )
8583, 84subcld 8230 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( z  -  y
)  e.  CC )
8664adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( A  /  y
)  e.  CC )
8781simprbi 273 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  { w  e.  CC  |  w #  0 }  ->  z #  0
)
8879, 87syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
z #  0 )
8986, 83, 88divclapd 8707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( A  / 
y )  /  z
)  e.  CC )
90 mulneg12 8316 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  -  y
)  e.  CC  /\  ( ( A  / 
y )  /  z
)  e.  CC )  ->  ( -u (
z  -  y )  x.  ( ( A  /  y )  / 
z ) )  =  ( ( z  -  y )  x.  -u (
( A  /  y
)  /  z ) ) )
9185, 89, 90syl2anc 409 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( -u ( z  -  y )  x.  (
( A  /  y
)  /  z ) )  =  ( ( z  -  y )  x.  -u ( ( A  /  y )  / 
z ) ) )
9284, 83, 89subdird 8334 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( y  -  z )  x.  (
( A  /  y
)  /  z ) )  =  ( ( y  x.  ( ( A  /  y )  /  z ) )  -  ( z  x.  ( ( A  / 
y )  /  z
) ) ) )
9383, 84negsubdi2d 8246 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  ->  -u ( z  -  y
)  =  ( y  -  z ) )
9493oveq1d 5868 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( -u ( z  -  y )  x.  (
( A  /  y
)  /  z ) )  =  ( ( y  -  z )  x.  ( ( A  /  y )  / 
z ) ) )
95 oveq2 5861 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( A  /  x )  =  ( A  /  z
) )
96 simpll 524 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  ->  A  e.  CC )
9796, 83, 88divclapd 8707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( A  /  z
)  e.  CC )
9815, 95, 79, 97fvmptd3 5589 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  z
)  =  ( A  /  z ) )
9943ad2antlr 486 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
y #  0 )
10096, 84, 99divcanap2d 8709 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( y  x.  ( A  /  y ) )  =  A )
101100oveq1d 5868 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( y  x.  ( A  /  y
) )  /  z
)  =  ( A  /  z ) )
10284, 86, 83, 88divassapd 8743 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( y  x.  ( A  /  y
) )  /  z
)  =  ( y  x.  ( ( A  /  y )  / 
z ) ) )
10398, 101, 1023eqtr2d 2209 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  z
)  =  ( y  x.  ( ( A  /  y )  / 
z ) ) )
104 oveq2 5861 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  y  ->  ( A  /  x )  =  ( A  /  y
) )
10550adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
y  e.  { w  e.  CC  |  w #  0 } )
10615, 104, 105, 86fvmptd3 5589 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  y
)  =  ( A  /  y ) )
10786, 83, 88divcanap2d 8709 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( z  x.  (
( A  /  y
)  /  z ) )  =  ( A  /  y ) )
108106, 107eqtr4d 2206 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  y
)  =  ( z  x.  ( ( A  /  y )  / 
z ) ) )
109103, 108oveq12d 5871 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 y ) )  =  ( ( y  x.  ( ( A  /  y )  / 
z ) )  -  ( z  x.  (
( A  /  y
)  /  z ) ) ) )
11092, 94, 1093eqtr4d 2213 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( -u ( z  -  y )  x.  (
( A  /  y
)  /  z ) )  =  ( ( ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  y
) ) )
11186, 83, 88divnegapd 8720 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  ->  -u ( ( A  / 
y )  /  z
)  =  ( -u ( A  /  y
)  /  z ) )
112111oveq2d 5869 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( z  -  y )  x.  -u (
( A  /  y
)  /  z ) )  =  ( ( z  -  y )  x.  ( -u ( A  /  y )  / 
z ) ) )
11391, 110, 1123eqtr3d 2211 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 y ) )  =  ( ( z  -  y )  x.  ( -u ( A  /  y )  / 
z ) ) )
114113oveq1d 5868 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 y ) )  /  ( z  -  y ) )  =  ( ( ( z  -  y )  x.  ( -u ( A  /  y )  / 
z ) )  / 
( z  -  y
) ) )
11586negcld 8217 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  ->  -u ( A  /  y
)  e.  CC )
116115, 83, 88divclapd 8707 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( -u ( A  / 
y )  /  z
)  e.  CC )
117 breq1 3992 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  z  ->  (
k #  y  <->  z #  y
) )
118117elrab 2886 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  { k  e. 
{ w  e.  CC  |  w #  0 }  |  k #  y }  <->  ( z  e.  { w  e.  CC  |  w #  0 }  /\  z #  y ) )
119118simprbi 273 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  { k  e. 
{ w  e.  CC  |  w #  0 }  |  k #  y }  ->  z #  y )
120119adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
z #  y )
12183, 84, 120subap0d 8563 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( z  -  y
) #  0 )
122116, 85, 121divcanap3d 8712 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( ( z  -  y )  x.  ( -u ( A  /  y )  / 
z ) )  / 
( z  -  y
) )  =  (
-u ( A  / 
y )  /  z
) )
123114, 122eqtrd 2203 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  /\  z  e.  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  -> 
( ( ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 y ) )  /  ( z  -  y ) )  =  ( -u ( A  /  y )  / 
z ) )
124123mpteq2dva 4079 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
z  e.  { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  y
) )  /  (
z  -  y ) ) )  =  ( z  e.  { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( -u ( A  /  y )  / 
z ) ) )
125 ssrab2 3232 . . . . . . . . . . . . 13  |-  { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  C_  { w  e.  CC  |  w #  0 }
126 resmpt 4939 . . . . . . . . . . . . 13  |-  ( { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  C_  { w  e.  CC  |  w #  0 }  ->  ( (
z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  |`  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  =  ( z  e.  {
k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( -u ( A  /  y )  / 
z ) ) )
127125, 126ax-mp 5 . . . . . . . . . . . 12  |-  ( ( z  e.  { w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y )  / 
z ) )  |`  { k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y } )  =  ( z  e.  {
k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( -u ( A  /  y )  / 
z ) )
128124, 127eqtr4di 2221 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
z  e.  { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  y
) )  /  (
z  -  y ) ) )  =  ( ( z  e.  {
w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y
)  /  z ) )  |`  { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }
) )
129128oveq1d 5868 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( z  e.  {
k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  y
) )  /  (
z  -  y ) ) ) lim CC  y
)  =  ( ( ( z  e.  {
w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y
)  /  z ) )  |`  { k  e.  { w  e.  CC  |  w #  0 }  |  k #  y }
) lim CC  y )
)
13077, 129eqtr4d 2206 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( z  e.  {
w  e.  CC  |  w #  0 }  |->  ( -u ( A  /  y
)  /  z ) ) lim CC  y )  =  ( ( z  e.  { k  e. 
{ w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 y ) )  /  ( z  -  y ) ) ) lim
CC  y ) )
13173, 130eleqtrd 2249 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e. 
{ k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) ) lim CC  y ) )
13251cntoptopon 13326 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
133132toponrestid 12813 . . . . . . . . 9  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
134 eqid 2170 . . . . . . . . 9  |-  ( z  e.  { k  e. 
{ w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `
 y ) )  /  ( z  -  y ) ) )  =  ( z  e. 
{ k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) )
135 ssidd 3168 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  CC  C_  CC )
13634adantr 274 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) : { w  e.  CC  |  w #  0 } --> CC )
137133, 51, 134, 135, 136, 76eldvap 13445 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
y ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) )  <->  ( y  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 { w  e.  CC  |  w #  0 } )  /\  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e. 
{ k  e.  {
w  e.  CC  |  w #  0 }  |  k #  y }  |->  ( ( ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) ) lim CC  y ) ) ) )
13858, 131, 137mpbir2and 939 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  y
( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) ) )
139 breldmg 4817 . . . . . . 7  |-  ( ( y  e.  CC  /\  -u ( A  /  (
y ^ 2 ) )  e.  CC  /\  y ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) ) )  -> 
y  e.  dom  ( CC  _D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) ) )
14038, 49, 138, 139syl3anc 1233 . . . . . 6  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  y  e.  dom  ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) )
14136, 140eqelssd 3166 . . . . 5  |-  ( A  e.  CC  ->  dom  ( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )  =  { w  e.  CC  |  w #  0 } )
142141feq2d 5335 . . . 4  |-  ( A  e.  CC  ->  (
( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) : dom  ( CC 
_D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) ) --> CC  <->  ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) : { w  e.  CC  |  w #  0 } --> CC ) )
14329, 142mpbid 146 . . 3  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) ) : { w  e.  CC  |  w #  0 } --> CC )
144143ffnd 5348 . 2  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) )  Fn 
{ w  e.  CC  |  w #  0 }
)
14511sqcld 10607 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  (
x ^ 2 )  e.  CC )
146 sqap0 10542 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( x ^ 2 ) #  0  <->  x #  0
) )
14711, 146syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  (
( x ^ 2 ) #  0  <->  x #  0
) )
14812, 147mpbird 166 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  (
x ^ 2 ) #  0 )
1496, 145, 148divclapd 8707 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  ( A  /  ( x ^
2 ) )  e.  CC )
150149negcld 8217 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  { w  e.  CC  |  w #  0 } )  ->  -u ( A  /  ( x ^
2 ) )  e.  CC )
151150ralrimiva 2543 . . 3  |-  ( A  e.  CC  ->  A. x  e.  { w  e.  CC  |  w #  0 } -u ( A  /  (
x ^ 2 ) )  e.  CC )
152 eqid 2170 . . . 4  |-  ( x  e.  { w  e.  CC  |  w #  0 }  |->  -u ( A  / 
( x ^ 2 ) ) )  =  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  -u ( A  /  ( x ^
2 ) ) )
153152fnmpt 5324 . . 3  |-  ( A. x  e.  { w  e.  CC  |  w #  0 } -u ( A  /  ( x ^
2 ) )  e.  CC  ->  ( x  e.  { w  e.  CC  |  w #  0 }  |-> 
-u ( A  / 
( x ^ 2 ) ) )  Fn 
{ w  e.  CC  |  w #  0 }
)
154151, 153syl 14 . 2  |-  ( A  e.  CC  ->  (
x  e.  { w  e.  CC  |  w #  0 }  |->  -u ( A  / 
( x ^ 2 ) ) )  Fn 
{ w  e.  CC  |  w #  0 }
)
15529ffund 5351 . . . . 5  |-  ( A  e.  CC  ->  Fun  ( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) )
156155adantr 274 . . . 4  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  Fun  ( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) )
157 funbrfv 5535 . . . 4  |-  ( Fun  ( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )  ->  ( y ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) )  ->  (
( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) `
 y )  = 
-u ( A  / 
( y ^ 2 ) ) ) )
158156, 138, 157sylc 62 . . 3  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) `
 y )  = 
-u ( A  / 
( y ^ 2 ) ) )
159 oveq1 5860 . . . . . 6  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
160159oveq2d 5869 . . . . 5  |-  ( x  =  y  ->  ( A  /  ( x ^
2 ) )  =  ( A  /  (
y ^ 2 ) ) )
161160negeqd 8114 . . . 4  |-  ( x  =  y  ->  -u ( A  /  ( x ^
2 ) )  = 
-u ( A  / 
( y ^ 2 ) ) )
162152, 161, 50, 49fvmptd3 5589 . . 3  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( x  e.  {
w  e.  CC  |  w #  0 }  |->  -u ( A  /  ( x ^
2 ) ) ) `
 y )  = 
-u ( A  / 
( y ^ 2 ) ) )
163158, 162eqtr4d 2206 . 2  |-  ( ( A  e.  CC  /\  y  e.  { w  e.  CC  |  w #  0 } )  ->  (
( CC  _D  (
x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) ) `
 y )  =  ( ( x  e. 
{ w  e.  CC  |  w #  0 }  |-> 
-u ( A  / 
( x ^ 2 ) ) ) `  y ) )
164144, 154, 163eqfnfvd 5596 1  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e. 
{ w  e.  CC  |  w #  0 }  |->  ( A  /  x
) ) )  =  ( x  e.  {
w  e.  CC  |  w #  0 }  |->  -u ( A  /  ( x ^
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   _Vcvv 2730    C_ wss 3121   class class class wbr 3989    |-> cmpt 4050   dom cdm 4611   ran crn 4612    |` cres 4613    o. ccom 4615   Fun wfun 5192    Fn wfn 5193   -->wf 5194   -onto->wfo 5196   ` cfv 5198  (class class class)co 5853    ^pm cpm 6627   CCcc 7772   0cc0 7774    x. cmul 7779    - cmin 8090   -ucneg 8091   # cap 8500    / cdiv 8589   2c2 8929   ^cexp 10475   abscabs 10961   MetOpencmopn 12779   Topctop 12789   intcnt 12887   -cn->ccncf 13351   lim CC climc 13417    _D cdv 13418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-pm 6629  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-cncf 13352  df-limced 13419  df-dvap 13420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator