ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodmrnu Unicode version

Theorem fodmrnu 5418
Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.)
Assertion
Ref Expression
fodmrnu  |-  ( ( F : A -onto-> B  /\  F : C -onto-> D
)  ->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem fodmrnu
StepHypRef Expression
1 fofn 5412 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
2 fofn 5412 . . 3  |-  ( F : C -onto-> D  ->  F  Fn  C )
3 fndmu 5289 . . 3  |-  ( ( F  Fn  A  /\  F  Fn  C )  ->  A  =  C )
41, 2, 3syl2an 287 . 2  |-  ( ( F : A -onto-> B  /\  F : C -onto-> D
)  ->  A  =  C )
5 forn 5413 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
6 forn 5413 . . 3  |-  ( F : C -onto-> D  ->  ran  F  =  D )
75, 6sylan9req 2220 . 2  |-  ( ( F : A -onto-> B  /\  F : C -onto-> D
)  ->  B  =  D )
84, 7jca 304 1  |-  ( ( F : A -onto-> B  /\  F : C -onto-> D
)  ->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   ran crn 4605    Fn wfn 5183   -onto->wfo 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-fn 5191  df-f 5192  df-fo 5194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator