ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodmrnu Unicode version

Theorem fodmrnu 5460
Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.)
Assertion
Ref Expression
fodmrnu  |-  ( ( F : A -onto-> B  /\  F : C -onto-> D
)  ->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem fodmrnu
StepHypRef Expression
1 fofn 5454 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
2 fofn 5454 . . 3  |-  ( F : C -onto-> D  ->  F  Fn  C )
3 fndmu 5331 . . 3  |-  ( ( F  Fn  A  /\  F  Fn  C )  ->  A  =  C )
41, 2, 3syl2an 289 . 2  |-  ( ( F : A -onto-> B  /\  F : C -onto-> D
)  ->  A  =  C )
5 forn 5455 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
6 forn 5455 . . 3  |-  ( F : C -onto-> D  ->  ran  F  =  D )
75, 6sylan9req 2242 . 2  |-  ( ( F : A -onto-> B  /\  F : C -onto-> D
)  ->  B  =  D )
84, 7jca 306 1  |-  ( ( F : A -onto-> B  /\  F : C -onto-> D
)  ->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363   ran crn 4641    Fn wfn 5225   -onto->wfo 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-11 1516  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-in 3149  df-ss 3156  df-fn 5233  df-f 5234  df-fo 5236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator