Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodmrnu | Unicode version |
Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.) |
Ref | Expression |
---|---|
fodmrnu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofn 5422 | . . 3 | |
2 | fofn 5422 | . . 3 | |
3 | fndmu 5299 | . . 3 | |
4 | 1, 2, 3 | syl2an 287 | . 2 |
5 | forn 5423 | . . 3 | |
6 | forn 5423 | . . 3 | |
7 | 5, 6 | sylan9req 2224 | . 2 |
8 | 4, 7 | jca 304 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 crn 4612 wfn 5193 wfo 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-fn 5201 df-f 5202 df-fo 5204 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |