ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodmrnu Unicode version

Theorem fodmrnu 5428
Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.)
Assertion
Ref Expression
fodmrnu  |-  ( ( F : A -onto-> B  /\  F : C -onto-> D
)  ->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem fodmrnu
StepHypRef Expression
1 fofn 5422 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
2 fofn 5422 . . 3  |-  ( F : C -onto-> D  ->  F  Fn  C )
3 fndmu 5299 . . 3  |-  ( ( F  Fn  A  /\  F  Fn  C )  ->  A  =  C )
41, 2, 3syl2an 287 . 2  |-  ( ( F : A -onto-> B  /\  F : C -onto-> D
)  ->  A  =  C )
5 forn 5423 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
6 forn 5423 . . 3  |-  ( F : C -onto-> D  ->  ran  F  =  D )
75, 6sylan9req 2224 . 2  |-  ( ( F : A -onto-> B  /\  F : C -onto-> D
)  ->  B  =  D )
84, 7jca 304 1  |-  ( ( F : A -onto-> B  /\  F : C -onto-> D
)  ->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   ran crn 4612    Fn wfn 5193   -onto->wfo 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-fn 5201  df-f 5202  df-fo 5204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator