ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn4 Unicode version

Theorem dffn4 5274
Description: A function maps onto its range. (Contributed by NM, 10-May-1998.)
Assertion
Ref Expression
dffn4  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )

Proof of Theorem dffn4
StepHypRef Expression
1 eqid 2095 . . 3  |-  ran  F  =  ran  F
21biantru 297 . 2  |-  ( F  Fn  A  <->  ( F  Fn  A  /\  ran  F  =  ran  F ) )
3 df-fo 5055 . 2  |-  ( F : A -onto-> ran  F  <->  ( F  Fn  A  /\  ran  F  =  ran  F
) )
42, 3bitr4i 186 1  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1296   ran crn 4468    Fn wfn 5044   -onto->wfo 5047
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1390  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-cleq 2088  df-fo 5055
This theorem is referenced by:  funforn  5275  ffoss  5320  tposf2  6071  mapsn  6487
  Copyright terms: Public domain W3C validator