Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbs1f | Unicode version |
Description: If is not free in , it is not free in . (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
hbs1f.1 |
Ref | Expression |
---|---|
hbs1f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbs1f.1 | . . 3 | |
2 | 1 | sbh 1764 | . 2 |
3 | 2, 1 | hbxfrbi 1460 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |