ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ5 Unicode version

Theorem sbequ5 1806
Description: Substitution does not change an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 21-Dec-2004.)
Assertion
Ref Expression
sbequ5  |-  ( [ w  /  z ] A. x  x  =  y  <->  A. x  x  =  y )

Proof of Theorem sbequ5
StepHypRef Expression
1 nfae 1743 . 2  |-  F/ z A. x  x  =  y
21sbf 1801 1  |-  ( [ w  /  z ] A. x  x  =  y  <->  A. x  x  =  y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371   [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator