ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbh Unicode version

Theorem sbh 1776
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 17-Oct-2004.)
Hypothesis
Ref Expression
sbh.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
sbh  |-  ( [ y  /  x ] ph 
<-> 
ph )

Proof of Theorem sbh
StepHypRef Expression
1 sb1 1766 . . . 4  |-  ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph ) )
2 sbh.1 . . . . 5  |-  ( ph  ->  A. x ph )
3219.41h 1685 . . . 4  |-  ( E. x ( x  =  y  /\  ph )  <->  ( E. x  x  =  y  /\  ph )
)
41, 3sylib 122 . . 3  |-  ( [ y  /  x ] ph  ->  ( E. x  x  =  y  /\  ph ) )
54simprd 114 . 2  |-  ( [ y  /  x ] ph  ->  ph )
6 stdpc4 1775 . . 3  |-  ( A. x ph  ->  [ y  /  x ] ph )
72, 6syl 14 . 2  |-  ( ph  ->  [ y  /  x ] ph )
85, 7impbii 126 1  |-  ( [ y  /  x ] ph 
<-> 
ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351   E.wex 1492   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-sb 1763
This theorem is referenced by:  sbf  1777  sb6x  1779  nfs1f  1780  hbs1f  1781  sbid2h  1849  sblimv  1894  sbrim  1956  sbrbif  1962  elsb1  2155  elsb2  2156
  Copyright terms: Public domain W3C validator