Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbs1f | GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
hbs1f.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
hbs1f | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbs1f.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | sbh 1753 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
3 | 2, 1 | hbxfrbi 1449 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1330 [wsb 1739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-i9 1507 ax-ial 1511 |
This theorem depends on definitions: df-bi 116 df-sb 1740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |