ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgriswlkdc Unicode version

Theorem upgriswlkdc 16071
Description: Properties of a pair of functions to be a walk in a pseudograph. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 28-Oct-2021.)
Hypotheses
Ref Expression
upgriswlk.v  |-  V  =  (Vtx `  G )
upgriswlk.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
upgriswlkdc  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V  /\  A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) ) )
Distinct variable groups:    k, G    k, F    k, I    P, k   
k, V

Proof of Theorem upgriswlkdc
StepHypRef Expression
1 upgriswlk.v . . 3  |-  V  =  (Vtx `  G )
2 upgriswlk.i . . 3  |-  I  =  (iEdg `  G )
31, 2iswlkg 16041 . 2  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V  /\  A. k  e.  ( 0..^ ( `  F )
)if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) ) ) ) )
4 ifpdc 985 . . . . . . . . 9  |-  (if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )  -> DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) ) )
54adantl 277 . . . . . . . 8  |-  ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\ if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )  -> DECID  ( P `  k )  =  ( P `  ( k  +  1 ) ) )
6 df-ifp 984 . . . . . . . . . 10  |-  (if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )  <->  ( (
( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) } )  \/  ( -.  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) ) ) )
7 dfsn2 3680 . . . . . . . . . . . . . . . 16  |-  { ( P `  k ) }  =  { ( P `  k ) ,  ( P `  k ) }
8 preq2 3744 . . . . . . . . . . . . . . . 16  |-  ( ( P `  k )  =  ( P `  ( k  +  1 ) )  ->  { ( P `  k ) ,  ( P `  k ) }  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
97, 8eqtrid 2274 . . . . . . . . . . . . . . 15  |-  ( ( P `  k )  =  ( P `  ( k  +  1 ) )  ->  { ( P `  k ) }  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
109eqeq2d 2241 . . . . . . . . . . . . . 14  |-  ( ( P `  k )  =  ( P `  ( k  +  1 ) )  ->  (
( I `  ( F `  k )
)  =  { ( P `  k ) }  <->  ( I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
1110biimpa 296 . . . . . . . . . . . . 13  |-  ( ( ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) } )  ->  (
I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
1211a1d 22 . . . . . . . . . . . 12  |-  ( ( ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) } )  ->  (
( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  -> 
( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
13 eqid 2229 . . . . . . . . . . . . . . . . 17  |-  (Edg `  G )  =  (Edg
`  G )
142, 13upgredginwlk 16067 . . . . . . . . . . . . . . . 16  |-  ( ( G  e. UPGraph  /\  F  e. Word  dom  I )  ->  (
k  e.  ( 0..^ ( `  F )
)  ->  ( I `  ( F `  k
) )  e.  (Edg
`  G ) ) )
1514adantrr 479 . . . . . . . . . . . . . . 15  |-  ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V ) )  ->  ( k  e.  ( 0..^ ( `  F
) )  ->  (
I `  ( F `  k ) )  e.  (Edg `  G )
) )
1615imp 124 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  -> 
( I `  ( F `  k )
)  e.  (Edg `  G ) )
17 simp-4l 541 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  G  e. UPGraph )
18 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  ( I `  ( F `  k
) )  e.  (Edg
`  G ) )
19 simprr 531 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )
20 simprr 531 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V ) )  ->  P : ( 0 ... ( `  F
) ) --> V )
2120ad5ant12 518 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  P :
( 0 ... ( `  F ) ) --> V )
22 elfzofz 10359 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( 0..^ ( `  F ) )  -> 
k  e.  ( 0 ... ( `  F
) ) )
2322ad3antlr 493 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  k  e.  ( 0 ... ( `  F ) ) )
2421, 23ffvelcdmd 5771 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  ( P `  k )  e.  V
)
2524elexd 2813 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  ( P `  k )  e.  _V )
26 fzofzp1 10433 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( 0..^ ( `  F ) )  -> 
( k  +  1 )  e.  ( 0 ... ( `  F
) ) )
2726ad3antlr 493 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  ( k  +  1 )  e.  ( 0 ... ( `  F ) ) )
2821, 27ffvelcdmd 5771 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  ( P `  ( k  +  1 ) )  e.  V
)
2928elexd 2813 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  ( P `  ( k  +  1 ) )  e.  _V )
30 neqne 2408 . . . . . . . . . . . . . . . . . 18  |-  ( -.  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  -> 
( P `  k
)  =/=  ( P `
 ( k  +  1 ) ) )
3130ad2antrl 490 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  ( P `  k )  =/=  ( P `  ( k  +  1 ) ) )
321, 13upgredgpr 15947 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e. UPGraph  /\  (
I `  ( F `  k ) )  e.  (Edg `  G )  /\  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) )  /\  ( ( P `  k )  e.  _V  /\  ( P `  (
k  +  1 ) )  e.  _V  /\  ( P `  k )  =/=  ( P `  ( k  +  1 ) ) ) )  ->  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  =  ( I `  ( F `
 k ) ) )
3317, 18, 19, 25, 29, 31, 32syl33anc 1286 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  ( I `  ( F `  k )
) )
3433eqcomd 2235 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  ( I `  ( F `  k )
)  e.  (Edg `  G ) )  /\  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  ( I `  ( F `  k
) )  =  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } )
3534exp31 364 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  -> 
( ( I `  ( F `  k ) )  e.  (Edg `  G )  ->  (
( -.  ( P `
 k )  =  ( P `  (
k  +  1 ) )  /\  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )  ->  (
I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
3616, 35mpd 13 . . . . . . . . . . . . 13  |-  ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  -> 
( ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  ->  (
I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
3736com12 30 . . . . . . . . . . . 12  |-  ( ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) )  ->  ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  -> 
( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
3812, 37jaoi 721 . . . . . . . . . . 11  |-  ( ( ( ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  ( I `  ( F `  k ) )  =  { ( P `  k ) } )  \/  ( -.  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) ) )  -> 
( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  -> 
( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
3938com12 30 . . . . . . . . . 10  |-  ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  -> 
( ( ( ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  (
I `  ( F `  k ) )  =  { ( P `  k ) } )  \/  ( -.  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) ) )  -> 
( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
406, 39biimtrid 152 . . . . . . . . 9  |-  ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  -> 
(if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) )  -> 
( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
4140imp 124 . . . . . . . 8  |-  ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\ if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )  -> 
( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
425, 41jca 306 . . . . . . 7  |-  ( ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\ if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )  -> 
(DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
4342ex 115 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  -> 
(if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) )  -> 
(DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
44 ifpprsnssdc 3774 . . . . . . 7  |-  ( ( ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  /\ DECID  ( P `  k )  =  ( P `  ( k  +  1 ) ) )  -> if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )
4544ancoms 268 . . . . . 6  |-  ( (DECID  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  (
I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  -> if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )
4643, 45impbid1 142 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V ) )  /\  k  e.  ( 0..^ ( `  F
) ) )  -> 
(if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) )  <->  (DECID  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  ( I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
4746ralbidva 2526 . . . 4  |-  ( ( G  e. UPGraph  /\  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V ) )  ->  ( A. k  e.  ( 0..^ ( `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) )  <->  A. k  e.  (
0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
4847pm5.32da 452 . . 3  |-  ( G  e. UPGraph  ->  ( ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V )  /\  A. k  e.  ( 0..^ ( `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  <->  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V )  /\  A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) ) )
49 df-3an 1004 . . 3  |-  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( `  F )
)if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) ) )  <-> 
( ( F  e. Word  dom  I  /\  P :
( 0 ... ( `  F ) ) --> V )  /\  A. k  e.  ( 0..^ ( `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) ) )
50 df-3an 1004 . . 3  |-  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )  <->  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V )  /\  A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
5148, 49, 503bitr4g 223 . 2  |-  ( G  e. UPGraph  ->  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V  /\  A. k  e.  ( 0..^ ( `  F )
)if- ( ( P `
 k )  =  ( P `  (
k  +  1 ) ) ,  ( I `
 ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) ) ) )  <-> 
( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) ) )
523, 51bitrd 188 1  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V  /\  A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839  if-wif 983    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   _Vcvv 2799    C_ wss 3197   {csn 3666   {cpr 3667   class class class wbr 4083   dom cdm 4719   -->wf 5314   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    + caddc 8002   ...cfz 10204  ..^cfzo 10338  ♯chash 10997  Word cword 11071  Vtxcvtx 15813  iEdgciedg 15814  Edgcedg 15858  UPGraphcupgr 15891  Walkscwlks 16030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-map 6797  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-dec 9579  df-uz 9723  df-fz 10205  df-fzo 10339  df-ihash 10998  df-word 11072  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-edg 15859  df-uhgrm 15869  df-upgren 15893  df-wlks 16031
This theorem is referenced by:  upgrwlkedg  16072  upgrwlkcompim  16073  upgrwlkvtxedg  16075
  Copyright terms: Public domain W3C validator