![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > limord | Unicode version |
Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
Ref | Expression |
---|---|
limord |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflim2 4221 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simp1bi 961 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-ilim 4220 |
This theorem is referenced by: limelon 4250 nlimsucg 4410 |
Copyright terms: Public domain | W3C validator |