ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limord Unicode version

Theorem limord 4486
Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limord  |-  ( Lim 
A  ->  Ord  A )

Proof of Theorem limord
StepHypRef Expression
1 dflim2 4461 . 2  |-  ( Lim 
A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
21simp1bi 1036 1  |-  ( Lim 
A  ->  Ord  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   (/)c0 3491   U.cuni 3888   Ord word 4453   Lim wlim 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-ilim 4460
This theorem is referenced by:  limelon  4490  nlimsucg  4658
  Copyright terms: Public domain W3C validator