ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limord Unicode version

Theorem limord 4373
Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limord  |-  ( Lim 
A  ->  Ord  A )

Proof of Theorem limord
StepHypRef Expression
1 dflim2 4348 . 2  |-  ( Lim 
A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
21simp1bi 1002 1  |-  ( Lim 
A  ->  Ord  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   (/)c0 3409   U.cuni 3789   Ord word 4340   Lim wlim 4342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-3an 970  df-ilim 4347
This theorem is referenced by:  limelon  4377  nlimsucg  4543
  Copyright terms: Public domain W3C validator