ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlim0 Unicode version

Theorem nlim0 4441
Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
nlim0  |-  -.  Lim  (/)

Proof of Theorem nlim0
StepHypRef Expression
1 noel 3464 . . 3  |-  -.  (/)  e.  (/)
2 simp2 1001 . . 3  |-  ( ( Ord  (/)  /\  (/)  e.  (/)  /\  (/)  =  U. (/) )  ->  (/) 
e.  (/) )
31, 2mto 664 . 2  |-  -.  ( Ord  (/)  /\  (/)  e.  (/)  /\  (/)  =  U. (/) )
4 dflim2 4417 . 2  |-  ( Lim  (/) 
<->  ( Ord  (/)  /\  (/)  e.  (/)  /\  (/)  =  U. (/) ) )
53, 4mtbir 673 1  |-  -.  Lim  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ w3a 981    = wceq 1373    e. wcel 2176   (/)c0 3460   U.cuni 3850   Ord word 4409   Lim wlim 4411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-nul 3461  df-ilim 4416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator