ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlim0 Unicode version

Theorem nlim0 4412
Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
nlim0  |-  -.  Lim  (/)

Proof of Theorem nlim0
StepHypRef Expression
1 noel 3441 . . 3  |-  -.  (/)  e.  (/)
2 simp2 1000 . . 3  |-  ( ( Ord  (/)  /\  (/)  e.  (/)  /\  (/)  =  U. (/) )  ->  (/) 
e.  (/) )
31, 2mto 663 . 2  |-  -.  ( Ord  (/)  /\  (/)  e.  (/)  /\  (/)  =  U. (/) )
4 dflim2 4388 . 2  |-  ( Lim  (/) 
<->  ( Ord  (/)  /\  (/)  e.  (/)  /\  (/)  =  U. (/) ) )
53, 4mtbir 672 1  |-  -.  Lim  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ w3a 980    = wceq 1364    e. wcel 2160   (/)c0 3437   U.cuni 3824   Ord word 4380   Lim wlim 4382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-dif 3146  df-nul 3438  df-ilim 4387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator