ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlim0 Unicode version

Theorem nlim0 4396
Description: The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
nlim0  |-  -.  Lim  (/)

Proof of Theorem nlim0
StepHypRef Expression
1 noel 3428 . . 3  |-  -.  (/)  e.  (/)
2 simp2 998 . . 3  |-  ( ( Ord  (/)  /\  (/)  e.  (/)  /\  (/)  =  U. (/) )  ->  (/) 
e.  (/) )
31, 2mto 662 . 2  |-  -.  ( Ord  (/)  /\  (/)  e.  (/)  /\  (/)  =  U. (/) )
4 dflim2 4372 . 2  |-  ( Lim  (/) 
<->  ( Ord  (/)  /\  (/)  e.  (/)  /\  (/)  =  U. (/) ) )
53, 4mtbir 671 1  |-  -.  Lim  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ w3a 978    = wceq 1353    e. wcel 2148   (/)c0 3424   U.cuni 3811   Ord word 4364   Lim wlim 4366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-nul 3425  df-ilim 4371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator