ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limuni Unicode version

Theorem limuni 4414
Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni  |-  ( Lim 
A  ->  A  =  U. A )

Proof of Theorem limuni
StepHypRef Expression
1 dflim2 4388 . 2  |-  ( Lim 
A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
21simp3bi 1016 1  |-  ( Lim 
A  ->  A  =  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   (/)c0 3437   U.cuni 3824   Ord word 4380   Lim wlim 4382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982  df-ilim 4387
This theorem is referenced by:  limuni2  4415  nlimsucg  4583  freccllem  6426  frecfcllem  6428  frecsuclem  6430
  Copyright terms: Public domain W3C validator