ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limuni Unicode version

Theorem limuni 4381
Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni  |-  ( Lim 
A  ->  A  =  U. A )

Proof of Theorem limuni
StepHypRef Expression
1 dflim2 4355 . 2  |-  ( Lim 
A  <->  ( Ord  A  /\  (/)  e.  A  /\  A  =  U. A ) )
21simp3bi 1009 1  |-  ( Lim 
A  ->  A  =  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   (/)c0 3414   U.cuni 3796   Ord word 4347   Lim wlim 4349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975  df-ilim 4354
This theorem is referenced by:  limuni2  4382  nlimsucg  4550  freccllem  6381  frecfcllem  6383  frecsuclem  6385
  Copyright terms: Public domain W3C validator