ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlimsucg Unicode version

Theorem nlimsucg 4658
Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
nlimsucg  |-  ( A  e.  V  ->  -.  Lim  suc  A )

Proof of Theorem nlimsucg
StepHypRef Expression
1 limord 4486 . . . . . 6  |-  ( Lim 
suc  A  ->  Ord  suc  A )
2 ordsuc 4655 . . . . . 6  |-  ( Ord 
A  <->  Ord  suc  A )
31, 2sylibr 134 . . . . 5  |-  ( Lim 
suc  A  ->  Ord  A
)
4 limuni 4487 . . . . 5  |-  ( Lim 
suc  A  ->  suc  A  =  U. suc  A )
53, 4jca 306 . . . 4  |-  ( Lim 
suc  A  ->  ( Ord 
A  /\  suc  A  = 
U. suc  A )
)
6 ordtr 4469 . . . . . . . 8  |-  ( Ord 
A  ->  Tr  A
)
7 unisucg 4505 . . . . . . . . 9  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )
87biimpa 296 . . . . . . . 8  |-  ( ( A  e.  V  /\  Tr  A )  ->  U. suc  A  =  A )
96, 8sylan2 286 . . . . . . 7  |-  ( ( A  e.  V  /\  Ord  A )  ->  U. suc  A  =  A )
109eqeq2d 2241 . . . . . 6  |-  ( ( A  e.  V  /\  Ord  A )  ->  ( suc  A  =  U. suc  A  <->  suc  A  =  A ) )
11 ordirr 4634 . . . . . . . . 9  |-  ( Ord 
A  ->  -.  A  e.  A )
12 eleq2 2293 . . . . . . . . . 10  |-  ( suc 
A  =  A  -> 
( A  e.  suc  A  <-> 
A  e.  A ) )
1312notbid 671 . . . . . . . . 9  |-  ( suc 
A  =  A  -> 
( -.  A  e. 
suc  A  <->  -.  A  e.  A ) )
1411, 13syl5ibrcom 157 . . . . . . . 8  |-  ( Ord 
A  ->  ( suc  A  =  A  ->  -.  A  e.  suc  A ) )
15 sucidg 4507 . . . . . . . . 9  |-  ( A  e.  V  ->  A  e.  suc  A )
1615con3i 635 . . . . . . . 8  |-  ( -.  A  e.  suc  A  ->  -.  A  e.  V
)
1714, 16syl6 33 . . . . . . 7  |-  ( Ord 
A  ->  ( suc  A  =  A  ->  -.  A  e.  V )
)
1817adantl 277 . . . . . 6  |-  ( ( A  e.  V  /\  Ord  A )  ->  ( suc  A  =  A  ->  -.  A  e.  V
) )
1910, 18sylbid 150 . . . . 5  |-  ( ( A  e.  V  /\  Ord  A )  ->  ( suc  A  =  U. suc  A  ->  -.  A  e.  V ) )
2019expimpd 363 . . . 4  |-  ( A  e.  V  ->  (
( Ord  A  /\  suc  A  =  U. suc  A )  ->  -.  A  e.  V ) )
215, 20syl5 32 . . 3  |-  ( A  e.  V  ->  ( Lim  suc  A  ->  -.  A  e.  V )
)
2221con2d 627 . 2  |-  ( A  e.  V  ->  ( A  e.  V  ->  -. 
Lim  suc  A ) )
2322pm2.43i 49 1  |-  ( A  e.  V  ->  -.  Lim  suc  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   U.cuni 3888   Tr wtr 4182   Ord word 4453   Lim wlim 4455   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-iord 4457  df-ilim 4460  df-suc 4462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator