ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nlimsucg Unicode version

Theorem nlimsucg 4615
Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
nlimsucg  |-  ( A  e.  V  ->  -.  Lim  suc  A )

Proof of Theorem nlimsucg
StepHypRef Expression
1 limord 4443 . . . . . 6  |-  ( Lim 
suc  A  ->  Ord  suc  A )
2 ordsuc 4612 . . . . . 6  |-  ( Ord 
A  <->  Ord  suc  A )
31, 2sylibr 134 . . . . 5  |-  ( Lim 
suc  A  ->  Ord  A
)
4 limuni 4444 . . . . 5  |-  ( Lim 
suc  A  ->  suc  A  =  U. suc  A )
53, 4jca 306 . . . 4  |-  ( Lim 
suc  A  ->  ( Ord 
A  /\  suc  A  = 
U. suc  A )
)
6 ordtr 4426 . . . . . . . 8  |-  ( Ord 
A  ->  Tr  A
)
7 unisucg 4462 . . . . . . . . 9  |-  ( A  e.  V  ->  ( Tr  A  <->  U. suc  A  =  A ) )
87biimpa 296 . . . . . . . 8  |-  ( ( A  e.  V  /\  Tr  A )  ->  U. suc  A  =  A )
96, 8sylan2 286 . . . . . . 7  |-  ( ( A  e.  V  /\  Ord  A )  ->  U. suc  A  =  A )
109eqeq2d 2217 . . . . . 6  |-  ( ( A  e.  V  /\  Ord  A )  ->  ( suc  A  =  U. suc  A  <->  suc  A  =  A ) )
11 ordirr 4591 . . . . . . . . 9  |-  ( Ord 
A  ->  -.  A  e.  A )
12 eleq2 2269 . . . . . . . . . 10  |-  ( suc 
A  =  A  -> 
( A  e.  suc  A  <-> 
A  e.  A ) )
1312notbid 669 . . . . . . . . 9  |-  ( suc 
A  =  A  -> 
( -.  A  e. 
suc  A  <->  -.  A  e.  A ) )
1411, 13syl5ibrcom 157 . . . . . . . 8  |-  ( Ord 
A  ->  ( suc  A  =  A  ->  -.  A  e.  suc  A ) )
15 sucidg 4464 . . . . . . . . 9  |-  ( A  e.  V  ->  A  e.  suc  A )
1615con3i 633 . . . . . . . 8  |-  ( -.  A  e.  suc  A  ->  -.  A  e.  V
)
1714, 16syl6 33 . . . . . . 7  |-  ( Ord 
A  ->  ( suc  A  =  A  ->  -.  A  e.  V )
)
1817adantl 277 . . . . . 6  |-  ( ( A  e.  V  /\  Ord  A )  ->  ( suc  A  =  A  ->  -.  A  e.  V
) )
1910, 18sylbid 150 . . . . 5  |-  ( ( A  e.  V  /\  Ord  A )  ->  ( suc  A  =  U. suc  A  ->  -.  A  e.  V ) )
2019expimpd 363 . . . 4  |-  ( A  e.  V  ->  (
( Ord  A  /\  suc  A  =  U. suc  A )  ->  -.  A  e.  V ) )
215, 20syl5 32 . . 3  |-  ( A  e.  V  ->  ( Lim  suc  A  ->  -.  A  e.  V )
)
2221con2d 625 . 2  |-  ( A  e.  V  ->  ( A  e.  V  ->  -. 
Lim  suc  A ) )
2322pm2.43i 49 1  |-  ( A  e.  V  ->  -.  Lim  suc  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   U.cuni 3850   Tr wtr 4143   Ord word 4410   Lim wlim 4412   suc csuc 4413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4144  df-iord 4414  df-ilim 4417  df-suc 4419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator