Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nlimsucg | Unicode version |
Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nlimsucg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 4380 | . . . . . 6 | |
2 | ordsuc 4547 | . . . . . 6 | |
3 | 1, 2 | sylibr 133 | . . . . 5 |
4 | limuni 4381 | . . . . 5 | |
5 | 3, 4 | jca 304 | . . . 4 |
6 | ordtr 4363 | . . . . . . . 8 | |
7 | unisucg 4399 | . . . . . . . . 9 | |
8 | 7 | biimpa 294 | . . . . . . . 8 |
9 | 6, 8 | sylan2 284 | . . . . . . 7 |
10 | 9 | eqeq2d 2182 | . . . . . 6 |
11 | ordirr 4526 | . . . . . . . . 9 | |
12 | eleq2 2234 | . . . . . . . . . 10 | |
13 | 12 | notbid 662 | . . . . . . . . 9 |
14 | 11, 13 | syl5ibrcom 156 | . . . . . . . 8 |
15 | sucidg 4401 | . . . . . . . . 9 | |
16 | 15 | con3i 627 | . . . . . . . 8 |
17 | 14, 16 | syl6 33 | . . . . . . 7 |
18 | 17 | adantl 275 | . . . . . 6 |
19 | 10, 18 | sylbid 149 | . . . . 5 |
20 | 19 | expimpd 361 | . . . 4 |
21 | 5, 20 | syl5 32 | . . 3 |
22 | 21 | con2d 619 | . 2 |
23 | 22 | pm2.43i 49 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1348 wcel 2141 cuni 3796 wtr 4087 word 4347 wlim 4349 csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-ilim 4354 df-suc 4356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |