| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp1bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp1d 1033 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: limord 4485 smores2 6438 smofvon2dm 6440 smofvon 6443 errel 6687 lincmb01cmp 10195 iccf1o 10196 elfznn0 10306 elfzouz 10343 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 sin01gt0 12268 cos01gt0 12269 sin02gt0 12270 eulerthlema 12747 modprm0 12772 gzcn 12890 subgbas 13710 subgrcl 13711 rngabl 13893 srgcmn 13924 ringgrp 13959 subrngrcl 14161 lmodgrp 14252 coseq00topi 15503 coseq0negpitopi 15504 cosq34lt1 15518 cos11 15521 nconstwlpolemgt0 16391 |
| Copyright terms: Public domain | W3C validator |