ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1bi Unicode version

Theorem simp1bi 1015
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
Assertion
Ref Expression
simp1bi  |-  ( ph  ->  ps )

Proof of Theorem simp1bi
StepHypRef Expression
1 3simp1bi.1 . . 3  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
21biimpi 120 . 2  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
32simp1d 1012 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  limord  4460  smores2  6403  smofvon2dm  6405  smofvon  6408  errel  6652  lincmb01cmp  10160  iccf1o  10161  elfznn0  10271  elfzouz  10308  ef01bndlem  12182  sin01bnd  12183  cos01bnd  12184  sin01gt0  12188  cos01gt0  12189  sin02gt0  12190  eulerthlema  12667  modprm0  12692  gzcn  12810  subgbas  13629  subgrcl  13630  rngabl  13812  srgcmn  13843  ringgrp  13878  subrngrcl  14080  lmodgrp  14171  coseq00topi  15422  coseq0negpitopi  15423  cosq34lt1  15437  cos11  15440  nconstwlpolemgt0  16205
  Copyright terms: Public domain W3C validator