![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp1bi | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
simp1bi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 119 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | simp1d 958 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 929 |
This theorem is referenced by: limord 4246 smores2 6097 smofvon2dm 6099 smofvon 6102 errel 6341 lincmb01cmp 9569 iccf1o 9570 elfznn0 9677 elfzouz 9711 ef01bndlem 11212 sin01bnd 11213 cos01bnd 11214 sin01gt0 11217 cos01gt0 11218 sin02gt0 11219 |
Copyright terms: Public domain | W3C validator |