| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp1bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp1d 1012 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: limord 4442 smores2 6380 smofvon2dm 6382 smofvon 6385 errel 6629 lincmb01cmp 10125 iccf1o 10126 elfznn0 10236 elfzouz 10273 ef01bndlem 12067 sin01bnd 12068 cos01bnd 12069 sin01gt0 12073 cos01gt0 12074 sin02gt0 12075 eulerthlema 12552 modprm0 12577 gzcn 12695 subgbas 13514 subgrcl 13515 rngabl 13697 srgcmn 13728 ringgrp 13763 subrngrcl 13965 lmodgrp 14056 coseq00topi 15307 coseq0negpitopi 15308 cosq34lt1 15322 cos11 15325 nconstwlpolemgt0 16003 |
| Copyright terms: Public domain | W3C validator |