ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1bi Unicode version

Theorem simp1bi 1002
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
Assertion
Ref Expression
simp1bi  |-  ( ph  ->  ps )

Proof of Theorem simp1bi
StepHypRef Expression
1 3simp1bi.1 . . 3  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
21biimpi 119 . 2  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
32simp1d 999 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  limord  4372  smores2  6258  smofvon2dm  6260  smofvon  6263  errel  6506  lincmb01cmp  9935  iccf1o  9936  elfznn0  10045  elfzouz  10082  ef01bndlem  11693  sin01bnd  11694  cos01bnd  11695  sin01gt0  11698  cos01gt0  11699  sin02gt0  11700  eulerthlema  12158  modprm0  12182  gzcn  12298  coseq00topi  13356  coseq0negpitopi  13357  cosq34lt1  13371  cos11  13374  nconstwlpolemgt0  13902
  Copyright terms: Public domain W3C validator