| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp1bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp1d 1011 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: limord 4441 smores2 6379 smofvon2dm 6381 smofvon 6384 errel 6628 lincmb01cmp 10124 iccf1o 10125 elfznn0 10235 elfzouz 10272 ef01bndlem 12038 sin01bnd 12039 cos01bnd 12040 sin01gt0 12044 cos01gt0 12045 sin02gt0 12046 eulerthlema 12523 modprm0 12548 gzcn 12666 subgbas 13485 subgrcl 13486 rngabl 13668 srgcmn 13699 ringgrp 13734 subrngrcl 13936 lmodgrp 14027 coseq00topi 15278 coseq0negpitopi 15279 cosq34lt1 15293 cos11 15296 nconstwlpolemgt0 15965 |
| Copyright terms: Public domain | W3C validator |