Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp1bi | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 |
Ref | Expression |
---|---|
simp1bi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 | |
2 | 1 | biimpi 119 | . 2 |
3 | 2 | simp1d 999 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: limord 4372 smores2 6258 smofvon2dm 6260 smofvon 6263 errel 6506 lincmb01cmp 9935 iccf1o 9936 elfznn0 10045 elfzouz 10082 ef01bndlem 11693 sin01bnd 11694 cos01bnd 11695 sin01gt0 11698 cos01gt0 11699 sin02gt0 11700 eulerthlema 12158 modprm0 12182 gzcn 12298 coseq00topi 13356 coseq0negpitopi 13357 cosq34lt1 13371 cos11 13374 nconstwlpolemgt0 13902 |
Copyright terms: Public domain | W3C validator |