ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1bi Unicode version

Theorem simp1bi 1014
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
Assertion
Ref Expression
simp1bi  |-  ( ph  ->  ps )

Proof of Theorem simp1bi
StepHypRef Expression
1 3simp1bi.1 . . 3  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
21biimpi 120 . 2  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
32simp1d 1011 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  limord  4427  smores2  6349  smofvon2dm  6351  smofvon  6354  errel  6598  lincmb01cmp  10072  iccf1o  10073  elfznn0  10183  elfzouz  10220  ef01bndlem  11902  sin01bnd  11903  cos01bnd  11904  sin01gt0  11908  cos01gt0  11909  sin02gt0  11910  eulerthlema  12371  modprm0  12395  gzcn  12513  subgbas  13251  subgrcl  13252  rngabl  13434  srgcmn  13465  ringgrp  13500  subrngrcl  13702  lmodgrp  13793  coseq00topi  15011  coseq0negpitopi  15012  cosq34lt1  15026  cos11  15029  nconstwlpolemgt0  15624
  Copyright terms: Public domain W3C validator