| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp1bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp1d 1012 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: limord 4460 smores2 6403 smofvon2dm 6405 smofvon 6408 errel 6652 lincmb01cmp 10160 iccf1o 10161 elfznn0 10271 elfzouz 10308 ef01bndlem 12182 sin01bnd 12183 cos01bnd 12184 sin01gt0 12188 cos01gt0 12189 sin02gt0 12190 eulerthlema 12667 modprm0 12692 gzcn 12810 subgbas 13629 subgrcl 13630 rngabl 13812 srgcmn 13843 ringgrp 13878 subrngrcl 14080 lmodgrp 14171 coseq00topi 15422 coseq0negpitopi 15423 cosq34lt1 15437 cos11 15440 nconstwlpolemgt0 16205 |
| Copyright terms: Public domain | W3C validator |