ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsneg Unicode version

Theorem lgsneg 15349
Description: The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsneg  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L -u N
)  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A  /L N ) ) )

Proof of Theorem lgsneg
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3567 . . . . . . . . 9  |-  ( A  <  0  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  -u 1
)
21adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  -u 1
)
32oveq1d 5940 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  =  (
-u 1  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) ) )
4 simpl2 1003 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  N  e.  ZZ )
5 0z 9354 . . . . . . . . . . 11  |-  0  e.  ZZ
6 zdclt 9420 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
75, 6mpan2 425 . . . . . . . . . 10  |-  ( N  e.  ZZ  -> DECID  N  <  0
)
8 oveq2 5933 . . . . . . . . . . . 12  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  -u 1  ->  ( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  ( -u 1  x.  -u 1 ) )
9 neg1mulneg1e1 9220 . . . . . . . . . . . 12  |-  ( -u
1  x.  -u 1
)  =  1
108, 9eqtrdi 2245 . . . . . . . . . . 11  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  -u 1  ->  ( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  1 )
11 oveq2 5933 . . . . . . . . . . . 12  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  1  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  (
-u 1  x.  1 ) )
12 ax-1cn 7989 . . . . . . . . . . . . 13  |-  1  e.  CC
1312mulm1i 8446 . . . . . . . . . . . 12  |-  ( -u
1  x.  1 )  =  -u 1
1411, 13eqtrdi 2245 . . . . . . . . . . 11  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  1  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  -u
1 )
1510, 14ifsbdc 3574 . . . . . . . . . 10  |-  (DECID  N  <  0  ->  ( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  if ( N  <  0 ,  1 ,  -u 1 ) )
167, 15syl 14 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( -u 1  x.  if ( N  <  0 , 
-u 1 ,  1 ) )  =  if ( N  <  0 ,  1 ,  -u
1 ) )
174, 16syl 14 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  if ( N  <  0 ,  1 ,  -u
1 ) )
18 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  A  <  0 )
1918biantrud 304 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  ( N  <  0  /\  A  <  0 ) ) )
2019ifbid 3583 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( N  <  0 ,  -u 1 ,  1 )  =  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
2120oveq2d 5941 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  (
-u 1  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) ) )
22 simpl3 1004 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  N  =/=  0 )
2322necomd 2453 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
0  =/=  N )
24 zltlen 9421 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N  <  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
254, 5, 24sylancl 413 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
2623, 25mpbiran2d 442 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  N  <_  0 ) )
274zred 9465 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  N  e.  RR )
2827le0neg1d 8561 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <_  0  <->  0  <_  -u N ) )
29 0re 8043 . . . . . . . . . . . 12  |-  0  e.  RR
3027renegcld 8423 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  -u N  e.  RR )
31 lenlt 8119 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  -u N  e.  RR )  ->  ( 0  <_  -u N  <->  -.  -u N  <  0 ) )
3229, 30, 31sylancr 414 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( 0  <_  -u N  <->  -.  -u N  <  0
) )
3326, 28, 323bitrd 214 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  -.  -u N  <  0
) )
3433ifbid 3583 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( N  <  0 ,  1 ,  -u
1 )  =  if ( -.  -u N  <  0 ,  1 , 
-u 1 ) )
35 znegcl 9374 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
36 zdclt 9420 . . . . . . . . . . . 12  |-  ( (
-u N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  -u N  <  0
)
3735, 5, 36sylancl 413 . . . . . . . . . . 11  |-  ( N  e.  ZZ  -> DECID  -u N  <  0
)
38 ifnotdc 3599 . . . . . . . . . . 11  |-  (DECID  -u N  <  0  ->  if ( -.  -u N  <  0 ,  1 ,  -u
1 )  =  if ( -u N  <  0 ,  -u 1 ,  1 ) )
3937, 38syl 14 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  if ( -.  -u N  <  0 ,  1 , 
-u 1 )  =  if ( -u N  <  0 ,  -u 1 ,  1 ) )
404, 39syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( -.  -u N  <  0 ,  1 , 
-u 1 )  =  if ( -u N  <  0 ,  -u 1 ,  1 ) )
4134, 40eqtrd 2229 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( N  <  0 ,  1 ,  -u
1 )  =  if ( -u N  <  0 ,  -u 1 ,  1 ) )
4217, 21, 413eqtr3d 2237 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u 1  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )  =  if (
-u N  <  0 ,  -u 1 ,  1 ) )
4318biantrud 304 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u N  <  0  <->  (
-u N  <  0  /\  A  <  0
) ) )
4443ifbid 3583 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( -u N  <  0 ,  -u 1 ,  1 )  =  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )
453, 42, 443eqtrd 2233 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  =  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )
46 1t1e1 9160 . . . . . . 7  |-  ( 1  x.  1 )  =  1
47 iffalse 3570 . . . . . . . . 9  |-  ( -.  A  <  0  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  1 )
4847adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  if ( A  <  0 ,  -u
1 ,  1 )  =  1 )
49 simpr 110 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  -.  A  <  0 )
5049intnand 932 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  -.  ( N  <  0  /\  A  <  0 ) )
5150iffalsed 3572 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  if (
( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
5248, 51oveq12d 5943 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  =  ( 1  x.  1 ) )
5349intnand 932 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  -.  ( -u N  <  0  /\  A  <  0 ) )
5453iffalsed 3572 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  if (
( -u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
5546, 52, 543eqtr4a 2255 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  =  if ( (
-u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
56 simp1 999 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  A  e.  ZZ )
57 zdclt 9420 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
5856, 5, 57sylancl 413 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  A  <  0
)
59 exmiddc 837 . . . . . . 7  |-  (DECID  A  <  0  ->  ( A  <  0  \/  -.  A  <  0 ) )
6058, 59syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  <  0  \/  -.  A  <  0 ) )
6145, 55, 60mpjaodan 799 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  =  if ( (
-u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
6261eqcomd 2202 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  ( if ( A  <  0 , 
-u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) ) )
63 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  ->  n  e.  Prime )
64 simpl2 1003 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  ->  N  e.  ZZ )
65 zq 9717 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  QQ )
6664, 65syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  ->  N  e.  QQ )
67 pcneg 12519 . . . . . . . . . . 11  |-  ( ( n  e.  Prime  /\  N  e.  QQ )  ->  (
n  pCnt  -u N )  =  ( n  pCnt  N ) )
6863, 66, 67syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  -> 
( n  pCnt  -u N
)  =  ( n 
pCnt  N ) )
6968oveq2d 5941 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  -> 
( ( A  /L n ) ^
( n  pCnt  -u N
) )  =  ( ( A  /L
n ) ^ (
n  pCnt  N )
) )
7069adantlr 477 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  (
( A  /L
n ) ^ (
n  pCnt  -u N ) )  =  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) )
71 prmdc 12323 . . . . . . . . 9  |-  ( n  e.  NN  -> DECID  n  e.  Prime )
7271adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  -> DECID  n  e.  Prime )
7370, 72ifeq1dadc 3592 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  if ( n  e. 
Prime ,  ( ( A  /L n ) ^ ( n  pCnt  -u N ) ) ,  1 )  =  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) )
7473mpteq2dva 4124 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) )
7574seqeq3d 10564 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) )  =  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) )
76 zcn 9348 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
77763ad2ant2 1021 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  N  e.  CC )
7877absnegd 11371 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( abs `  -u N )  =  ( abs `  N
) )
7975, 78fveq12d 5568 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) ) )
8062, 79oveq12d 5943 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) ) )  =  ( ( if ( A  <  0 , 
-u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
81 neg1cn 9112 . . . . . 6  |-  -u 1  e.  CC
8281a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u 1  e.  CC )
8312a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  1  e.  CC )
8482, 83, 58ifcldcd 3598 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( A  <  0 ,  -u 1 ,  1 )  e.  CC )
8573ad2ant2 1021 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  N  <  0
)
86 dcan2 936 . . . . . 6  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
8785, 58, 86sylc 62 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( N  <  0  /\  A  <  0
) )
8882, 83, 87ifcldcd 3598 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
89 nnuz 9654 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
90 1zzd 9370 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  1  e.  ZZ )
91 eqid 2196 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
9291lgsfcl3 15346 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
9392ffvelcdmda 5700 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  x  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  x )  e.  ZZ )
94 zmulcl 9396 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
9594adantl 277 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  x.  y )  e.  ZZ )
9689, 90, 93, 95seqf 10573 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> ZZ )
97 nnabscl 11282 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
98973adant1 1017 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( abs `  N )  e.  NN )
9996, 98ffvelcdmd 5701 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  ZZ )
10099zcnd 9466 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  CC )
10184, 88, 100mulassd 8067 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
10280, 101eqtrd 2229 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) ) )  =  ( if ( A  <  0 ,  -u
1 ,  1 )  x.  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
103353ad2ant2 1021 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u N  e.  ZZ )
104 simp3 1001 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  N  =/=  0 )
10577, 104negne0d 8352 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u N  =/=  0 )
106 eqid 2196 . . . 4  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  -u N ) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  -u N ) ) ,  1 ) )
107106lgsval4 15345 . . 3  |-  ( ( A  e.  ZZ  /\  -u N  e.  ZZ  /\  -u N  =/=  0 )  ->  ( A  /L -u N )  =  ( if ( (
-u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  -u N ) ) ,  1 ) ) ) `  ( abs `  -u N ) ) ) )
10856, 103, 105, 107syl3anc 1249 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L -u N
)  =  ( if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) ) ) )
10991lgsval4 15345 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
110109oveq2d 5941 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A  /L N ) )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
111102, 108, 1103eqtr4d 2239 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L -u N
)  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   ifcif 3562   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896   1c1 7897    x. cmul 7901    < clt 8078    <_ cle 8079   -ucneg 8215   NNcn 9007   ZZcz 9343   QQcq 9710    seqcseq 10556   ^cexp 10647   abscabs 11179   Primecprime 12300    pCnt cpc 12478    /Lclgs 15322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-proddc 11733  df-dvds 11970  df-gcd 12146  df-prm 12301  df-phi 12404  df-pc 12479  df-lgs 15323
This theorem is referenced by:  lgsneg1  15350
  Copyright terms: Public domain W3C validator