ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsneg Unicode version

Theorem lgsneg 13525
Description: The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsneg  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L -u N
)  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A  /L N ) ) )

Proof of Theorem lgsneg
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3524 . . . . . . . . 9  |-  ( A  <  0  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  -u 1
)
21adantl 275 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  -u 1
)
32oveq1d 5856 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  =  (
-u 1  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) ) )
4 simpl2 991 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  N  e.  ZZ )
5 0z 9198 . . . . . . . . . . 11  |-  0  e.  ZZ
6 zdclt 9264 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
75, 6mpan2 422 . . . . . . . . . 10  |-  ( N  e.  ZZ  -> DECID  N  <  0
)
8 oveq2 5849 . . . . . . . . . . . 12  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  -u 1  ->  ( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  ( -u 1  x.  -u 1 ) )
9 neg1mulneg1e1 9065 . . . . . . . . . . . 12  |-  ( -u
1  x.  -u 1
)  =  1
108, 9eqtrdi 2214 . . . . . . . . . . 11  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  -u 1  ->  ( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  1 )
11 oveq2 5849 . . . . . . . . . . . 12  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  1  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  (
-u 1  x.  1 ) )
12 ax-1cn 7842 . . . . . . . . . . . . 13  |-  1  e.  CC
1312mulm1i 8297 . . . . . . . . . . . 12  |-  ( -u
1  x.  1 )  =  -u 1
1411, 13eqtrdi 2214 . . . . . . . . . . 11  |-  ( if ( N  <  0 ,  -u 1 ,  1 )  =  1  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  -u
1 )
1510, 14ifsbdc 3531 . . . . . . . . . 10  |-  (DECID  N  <  0  ->  ( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  if ( N  <  0 ,  1 ,  -u 1 ) )
167, 15syl 14 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( -u 1  x.  if ( N  <  0 , 
-u 1 ,  1 ) )  =  if ( N  <  0 ,  1 ,  -u
1 ) )
174, 16syl 14 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  if ( N  <  0 ,  1 ,  -u
1 ) )
18 simpr 109 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  A  <  0 )
1918biantrud 302 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  ( N  <  0  /\  A  <  0 ) ) )
2019ifbid 3540 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( N  <  0 ,  -u 1 ,  1 )  =  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
2120oveq2d 5857 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u 1  x.  if ( N  <  0 ,  -u 1 ,  1 ) )  =  (
-u 1  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) ) )
22 simpl3 992 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  N  =/=  0 )
2322necomd 2421 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
0  =/=  N )
24 zltlen 9265 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N  <  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
254, 5, 24sylancl 410 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
2623, 25mpbiran2d 439 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  N  <_  0 ) )
274zred 9309 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  N  e.  RR )
2827le0neg1d 8411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <_  0  <->  0  <_  -u N ) )
29 0re 7895 . . . . . . . . . . . 12  |-  0  e.  RR
3027renegcld 8274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  -u N  e.  RR )
31 lenlt 7970 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  -u N  e.  RR )  ->  ( 0  <_  -u N  <->  -.  -u N  <  0 ) )
3229, 30, 31sylancr 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( 0  <_  -u N  <->  -.  -u N  <  0
) )
3326, 28, 323bitrd 213 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( N  <  0  <->  -.  -u N  <  0
) )
3433ifbid 3540 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( N  <  0 ,  1 ,  -u
1 )  =  if ( -.  -u N  <  0 ,  1 , 
-u 1 ) )
35 znegcl 9218 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
36 zdclt 9264 . . . . . . . . . . . 12  |-  ( (
-u N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  -u N  <  0
)
3735, 5, 36sylancl 410 . . . . . . . . . . 11  |-  ( N  e.  ZZ  -> DECID  -u N  <  0
)
38 ifnotdc 3555 . . . . . . . . . . 11  |-  (DECID  -u N  <  0  ->  if ( -.  -u N  <  0 ,  1 ,  -u
1 )  =  if ( -u N  <  0 ,  -u 1 ,  1 ) )
3937, 38syl 14 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  if ( -.  -u N  <  0 ,  1 , 
-u 1 )  =  if ( -u N  <  0 ,  -u 1 ,  1 ) )
404, 39syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( -.  -u N  <  0 ,  1 , 
-u 1 )  =  if ( -u N  <  0 ,  -u 1 ,  1 ) )
4134, 40eqtrd 2198 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( N  <  0 ,  1 ,  -u
1 )  =  if ( -u N  <  0 ,  -u 1 ,  1 ) )
4217, 21, 413eqtr3d 2206 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u 1  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )  =  if (
-u N  <  0 ,  -u 1 ,  1 ) )
4318biantrud 302 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( -u N  <  0  <->  (
-u N  <  0  /\  A  <  0
) ) )
4443ifbid 3540 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  ->  if ( -u N  <  0 ,  -u 1 ,  1 )  =  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )
453, 42, 443eqtrd 2202 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  A  <  0 )  -> 
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  =  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 ) )
46 1t1e1 9005 . . . . . . 7  |-  ( 1  x.  1 )  =  1
47 iffalse 3527 . . . . . . . . 9  |-  ( -.  A  <  0  ->  if ( A  <  0 ,  -u 1 ,  1 )  =  1 )
4847adantl 275 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  if ( A  <  0 ,  -u
1 ,  1 )  =  1 )
49 simpr 109 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  -.  A  <  0 )
5049intnand 921 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  -.  ( N  <  0  /\  A  <  0 ) )
5150iffalsed 3529 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  if (
( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
5248, 51oveq12d 5859 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  =  ( 1  x.  1 ) )
5349intnand 921 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  -.  ( -u N  <  0  /\  A  <  0 ) )
5453iffalsed 3529 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  if (
( -u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  =  1 )
5546, 52, 543eqtr4a 2224 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  -.  A  <  0
)  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  =  if ( (
-u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
56 simp1 987 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  A  e.  ZZ )
57 zdclt 9264 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
5856, 5, 57sylancl 410 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  A  <  0
)
59 exmiddc 826 . . . . . . 7  |-  (DECID  A  <  0  ->  ( A  <  0  \/  -.  A  <  0 ) )
6058, 59syl 14 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  <  0  \/  -.  A  <  0 ) )
6145, 55, 60mpjaodan 788 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  =  if ( (
-u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )
6261eqcomd 2171 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  =  ( if ( A  <  0 , 
-u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) ) )
63 simpr 109 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  ->  n  e.  Prime )
64 simpl2 991 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  ->  N  e.  ZZ )
65 zq 9560 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  QQ )
6664, 65syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  ->  N  e.  QQ )
67 pcneg 12252 . . . . . . . . . . 11  |-  ( ( n  e.  Prime  /\  N  e.  QQ )  ->  (
n  pCnt  -u N )  =  ( n  pCnt  N ) )
6863, 66, 67syl2anc 409 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  -> 
( n  pCnt  -u N
)  =  ( n 
pCnt  N ) )
6968oveq2d 5857 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  Prime )  -> 
( ( A  /L n ) ^
( n  pCnt  -u N
) )  =  ( ( A  /L
n ) ^ (
n  pCnt  N )
) )
7069adantlr 469 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  (
( A  /L
n ) ^ (
n  pCnt  -u N ) )  =  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) )
71 prmdc 12058 . . . . . . . . 9  |-  ( n  e.  NN  -> DECID  n  e.  Prime )
7271adantl 275 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  -> DECID  n  e.  Prime )
7370, 72ifeq1dadc 3549 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  if ( n  e. 
Prime ,  ( ( A  /L n ) ^ ( n  pCnt  -u N ) ) ,  1 )  =  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) )
7473mpteq2dva 4071 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) )
7574seqeq3d 10384 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) )  =  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) )
76 zcn 9192 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
77763ad2ant2 1009 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  N  e.  CC )
7877absnegd 11127 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( abs `  -u N )  =  ( abs `  N
) )
7975, 78fveq12d 5492 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) )  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) ) )
8062, 79oveq12d 5859 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) ) )  =  ( ( if ( A  <  0 , 
-u 1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 ) )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
81 neg1cn 8958 . . . . . 6  |-  -u 1  e.  CC
8281a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u 1  e.  CC )
8312a1i 9 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  1  e.  CC )
8482, 83, 58ifcldcd 3554 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( A  <  0 ,  -u 1 ,  1 )  e.  CC )
8573ad2ant2 1009 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  N  <  0
)
86 dcan2 924 . . . . . 6  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
8785, 58, 86sylc 62 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( N  <  0  /\  A  <  0
) )
8882, 83, 87ifcldcd 3554 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
89 nnuz 9497 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
90 1zzd 9214 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  1  e.  ZZ )
91 eqid 2165 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
9291lgsfcl3 13522 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
9392ffvelrnda 5619 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  x  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  x )  e.  ZZ )
94 zmulcl 9240 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
9594adantl 275 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  x.  y )  e.  ZZ )
9689, 90, 93, 95seqf 10392 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> ZZ )
97 nnabscl 11038 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
98973adant1 1005 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( abs `  N )  e.  NN )
9996, 98ffvelrnd 5620 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  ZZ )
10099zcnd 9310 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  e.  CC )
10184, 88, 100mulassd 7918 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( if ( A  <  0 ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 ) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
10280, 101eqtrd 2198 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) ) )  =  ( if ( A  <  0 ,  -u
1 ,  1 )  x.  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
103353ad2ant2 1009 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u N  e.  ZZ )
104 simp3 989 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  N  =/=  0 )
10577, 104negne0d 8203 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u N  =/=  0 )
106 eqid 2165 . . . 4  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  -u N ) ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  -u N ) ) ,  1 ) )
107106lgsval4 13521 . . 3  |-  ( ( A  e.  ZZ  /\  -u N  e.  ZZ  /\  -u N  =/=  0 )  ->  ( A  /L -u N )  =  ( if ( (
-u N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  -u N ) ) ,  1 ) ) ) `  ( abs `  -u N ) ) ) )
10856, 103, 105, 107syl3anc 1228 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L -u N
)  =  ( if ( ( -u N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  -u N
) ) ,  1 ) ) ) `  ( abs `  -u N
) ) ) )
10991lgsval4 13521 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
110109oveq2d 5857 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A  /L N ) )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
111102, 108, 1103eqtr4d 2208 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L -u N
)  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2335   ifcif 3519   class class class wbr 3981    |-> cmpt 4042   ` cfv 5187  (class class class)co 5841   CCcc 7747   RRcr 7748   0cc0 7749   1c1 7750    x. cmul 7754    < clt 7929    <_ cle 7930   -ucneg 8066   NNcn 8853   ZZcz 9187   QQcq 9553    seqcseq 10376   ^cexp 10450   abscabs 10935   Primecprime 12035    pCnt cpc 12212    /Lclgs 13498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-irdg 6334  df-frec 6355  df-1o 6380  df-2o 6381  df-oadd 6384  df-er 6497  df-en 6703  df-dom 6704  df-fin 6705  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-5 8915  df-6 8916  df-7 8917  df-8 8918  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-ihash 10685  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-clim 11216  df-proddc 11488  df-dvds 11724  df-gcd 11872  df-prm 12036  df-phi 12139  df-pc 12213  df-lgs 13499
This theorem is referenced by:  lgsneg1  13526
  Copyright terms: Public domain W3C validator