| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrud | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 |
|
| Ref | Expression |
|---|---|
| biantrud |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 |
. 2
| |
| 2 | iba 300 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran2d 442 posng 4735 elrnmpt1 4917 fliftf 5846 elxp7 6228 eroveu 6685 sbthlemi5 7027 sbthlemi6 7028 elfi2 7038 reapltxor 8616 divap0b 8710 nnle1eq1 9014 nn0le0eq0 9277 nn0lt10b 9406 ioopos 10025 xrmaxiflemcom 11414 fz1f1o 11540 nndivdvds 11961 dvdsmultr2 11998 pcmpt 12512 pcmpt2 12513 resrhm2b 13805 lssle0 13928 discld 14372 cncnpi 14464 cnptoprest2 14476 lmss 14482 txcn 14511 isxmet2d 14584 xblss2 14641 bdxmet 14737 xmetxp 14743 cncfcdm 14818 lgsneg 15265 lgsdilem 15268 2lgslem1a 15329 |
| Copyright terms: Public domain | W3C validator |