| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrud | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 |
|
| Ref | Expression |
|---|---|
| biantrud |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 |
. 2
| |
| 2 | iba 300 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran2d 442 posng 4760 elrnmpt1 4943 fliftf 5886 elxp7 6274 eroveu 6731 sbthlemi5 7084 sbthlemi6 7085 elfi2 7095 reapltxor 8692 divap0b 8786 nnle1eq1 9090 nn0le0eq0 9353 nn0lt10b 9483 ioopos 10102 xrmaxiflemcom 11645 fz1f1o 11771 nndivdvds 12192 dvdsmultr2 12229 bitsmod 12352 pcmpt 12751 pcmpt2 12752 resrhm2b 14096 lssle0 14219 discld 14693 cncnpi 14785 cnptoprest2 14797 lmss 14803 txcn 14832 isxmet2d 14905 xblss2 14962 bdxmet 15058 xmetxp 15064 cncfcdm 15139 lgsneg 15586 lgsdilem 15589 2lgslem1a 15650 |
| Copyright terms: Public domain | W3C validator |