| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrud | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 |
|
| Ref | Expression |
|---|---|
| biantrud |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 |
. 2
| |
| 2 | iba 300 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran2d 442 posng 4790 elrnmpt1 4974 fliftf 5922 elxp7 6314 eroveu 6771 sbthlemi5 7124 sbthlemi6 7125 elfi2 7135 reapltxor 8732 divap0b 8826 nnle1eq1 9130 nn0le0eq0 9393 nn0lt10b 9523 ioopos 10142 xrmaxiflemcom 11755 fz1f1o 11881 nndivdvds 12302 dvdsmultr2 12339 bitsmod 12462 pcmpt 12861 pcmpt2 12862 resrhm2b 14207 lssle0 14330 discld 14804 cncnpi 14896 cnptoprest2 14908 lmss 14914 txcn 14943 isxmet2d 15016 xblss2 15073 bdxmet 15169 xmetxp 15175 cncfcdm 15250 lgsneg 15697 lgsdilem 15700 2lgslem1a 15761 |
| Copyright terms: Public domain | W3C validator |