| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrud | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 |
|
| Ref | Expression |
|---|---|
| biantrud |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 |
. 2
| |
| 2 | iba 300 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran2d 442 posng 4746 elrnmpt1 4928 fliftf 5867 elxp7 6255 eroveu 6712 sbthlemi5 7062 sbthlemi6 7063 elfi2 7073 reapltxor 8661 divap0b 8755 nnle1eq1 9059 nn0le0eq0 9322 nn0lt10b 9452 ioopos 10071 xrmaxiflemcom 11502 fz1f1o 11628 nndivdvds 12049 dvdsmultr2 12086 bitsmod 12209 pcmpt 12608 pcmpt2 12609 resrhm2b 13953 lssle0 14076 discld 14550 cncnpi 14642 cnptoprest2 14654 lmss 14660 txcn 14689 isxmet2d 14762 xblss2 14819 bdxmet 14915 xmetxp 14921 cncfcdm 14996 lgsneg 15443 lgsdilem 15446 2lgslem1a 15507 |
| Copyright terms: Public domain | W3C validator |