![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantrud | Unicode version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
Ref | Expression |
---|---|
biantrud.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biantrud |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | iba 300 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpbiran2d 442 posng 4732 elrnmpt1 4914 fliftf 5843 elxp7 6225 eroveu 6682 sbthlemi5 7022 sbthlemi6 7023 elfi2 7033 reapltxor 8610 divap0b 8704 nnle1eq1 9008 nn0le0eq0 9271 nn0lt10b 9400 ioopos 10019 xrmaxiflemcom 11395 fz1f1o 11521 nndivdvds 11942 dvdsmultr2 11979 pcmpt 12484 pcmpt2 12485 resrhm2b 13748 lssle0 13871 discld 14315 cncnpi 14407 cnptoprest2 14419 lmss 14425 txcn 14454 isxmet2d 14527 xblss2 14584 bdxmet 14680 xmetxp 14686 cncfcdm 14761 lgsneg 15181 lgsdilem 15184 2lgslem1a 15245 |
Copyright terms: Public domain | W3C validator |