| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrud | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
| Ref | Expression |
|---|---|
| biantrud.1 |
|
| Ref | Expression |
|---|---|
| biantrud |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrud.1 |
. 2
| |
| 2 | iba 300 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran2d 442 posng 4746 elrnmpt1 4928 fliftf 5867 elxp7 6255 eroveu 6712 sbthlemi5 7062 sbthlemi6 7063 elfi2 7073 reapltxor 8661 divap0b 8755 nnle1eq1 9059 nn0le0eq0 9322 nn0lt10b 9452 ioopos 10071 xrmaxiflemcom 11531 fz1f1o 11657 nndivdvds 12078 dvdsmultr2 12115 bitsmod 12238 pcmpt 12637 pcmpt2 12638 resrhm2b 13982 lssle0 14105 discld 14579 cncnpi 14671 cnptoprest2 14683 lmss 14689 txcn 14718 isxmet2d 14791 xblss2 14848 bdxmet 14944 xmetxp 14950 cncfcdm 15025 lgsneg 15472 lgsdilem 15475 2lgslem1a 15536 |
| Copyright terms: Public domain | W3C validator |