Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biantrud | Unicode version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2013.) |
Ref | Expression |
---|---|
biantrud.1 |
Ref | Expression |
---|---|
biantrud |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 | . 2 | |
2 | iba 300 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpbiran2d 442 posng 4692 elrnmpt1 4871 fliftf 5790 elxp7 6161 eroveu 6616 sbthlemi5 6950 sbthlemi6 6951 elfi2 6961 reapltxor 8520 divap0b 8612 nnle1eq1 8914 nn0le0eq0 9175 nn0lt10b 9304 ioopos 9919 xrmaxiflemcom 11223 fz1f1o 11349 nndivdvds 11769 dvdsmultr2 11806 pcmpt 12306 pcmpt2 12307 discld 13187 cncnpi 13279 cnptoprest2 13291 lmss 13297 txcn 13326 isxmet2d 13399 xblss2 13456 bdxmet 13552 xmetxp 13558 cncfcdm 13620 lgsneg 13976 lgsdilem 13979 |
Copyright terms: Public domain | W3C validator |