ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbirand Unicode version

Theorem mpbirand 441
Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
mpbirand.1  |-  ( ph  ->  ch )
mpbirand.2  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
Assertion
Ref Expression
mpbirand  |-  ( ph  ->  ( ps  <->  th )
)

Proof of Theorem mpbirand
StepHypRef Expression
1 mpbirand.2 . 2  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
2 mpbirand.1 . . 3  |-  ( ph  ->  ch )
32biantrurd 305 . 2  |-  ( ph  ->  ( th  <->  ( ch  /\ 
th ) ) )
41, 3bitr4d 191 1  |-  ( ph  ->  ( ps  <->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  fprodssdc  11593  dvdsr2d  13257  txmetcn  13950
  Copyright terms: Public domain W3C validator