Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > n0rf | Unicode version |
Description: An inhabited class is nonempty. Following the Definition of [Bauer], p. 483, we call a class nonempty if and inhabited if it has at least one element. In classical logic these two concepts are equivalent, for example see Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0r 3422 requires only that not be free in, rather than not occur in, . (Contributed by Jim Kingdon, 31-Jul-2018.) |
Ref | Expression |
---|---|
n0rf.1 |
Ref | Expression |
---|---|
n0rf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exalim 1490 | . 2 | |
2 | n0rf.1 | . . . . 5 | |
3 | nfcv 2308 | . . . . 5 | |
4 | 2, 3 | cleqf 2333 | . . . 4 |
5 | noel 3413 | . . . . . 6 | |
6 | 5 | nbn 689 | . . . . 5 |
7 | 6 | albii 1458 | . . . 4 |
8 | 4, 7 | bitr4i 186 | . . 3 |
9 | 8 | necon3abii 2372 | . 2 |
10 | 1, 9 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wal 1341 wceq 1343 wex 1480 wcel 2136 wnfc 2295 wne 2336 c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-v 2728 df-dif 3118 df-nul 3410 |
This theorem is referenced by: n0r 3422 abn0r 3433 |
Copyright terms: Public domain | W3C validator |