ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0rf Unicode version

Theorem n0rf 3481
Description: An inhabited class is nonempty. Following the Definition of [Bauer], p. 483, we call a class  A nonempty if  A  =/=  (/) and inhabited if it has at least one element. In classical logic these two concepts are equivalent, for example see Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0r 3482 requires only that  x not be free in, rather than not occur in,  A. (Contributed by Jim Kingdon, 31-Jul-2018.)
Hypothesis
Ref Expression
n0rf.1  |-  F/_ x A
Assertion
Ref Expression
n0rf  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )

Proof of Theorem n0rf
StepHypRef Expression
1 exalim 1526 . 2  |-  ( E. x  x  e.  A  ->  -.  A. x  -.  x  e.  A )
2 n0rf.1 . . . . 5  |-  F/_ x A
3 nfcv 2350 . . . . 5  |-  F/_ x (/)
42, 3cleqf 2375 . . . 4  |-  ( A  =  (/)  <->  A. x ( x  e.  A  <->  x  e.  (/) ) )
5 noel 3472 . . . . . 6  |-  -.  x  e.  (/)
65nbn 701 . . . . 5  |-  ( -.  x  e.  A  <->  ( x  e.  A  <->  x  e.  (/) ) )
76albii 1494 . . . 4  |-  ( A. x  -.  x  e.  A  <->  A. x ( x  e.  A  <->  x  e.  (/) ) )
84, 7bitr4i 187 . . 3  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
98necon3abii 2414 . 2  |-  ( A  =/=  (/)  <->  -.  A. x  -.  x  e.  A
)
101, 9sylibr 134 1  |-  ( E. x  x  e.  A  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1516    e. wcel 2178   F/_wnfc 2337    =/= wne 2378   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-v 2778  df-dif 3176  df-nul 3469
This theorem is referenced by:  n0r  3482  abn0r  3493
  Copyright terms: Public domain W3C validator