| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gcd0id | Unicode version | ||
| Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| gcd0id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcd0val 12281 |
. . . 4
| |
| 2 | oveq2 5952 |
. . . 4
| |
| 3 | fveq2 5576 |
. . . . 5
| |
| 4 | abs0 11369 |
. . . . 5
| |
| 5 | 3, 4 | eqtrdi 2254 |
. . . 4
|
| 6 | 1, 2, 5 | 3eqtr4a 2264 |
. . 3
|
| 7 | 6 | adantl 277 |
. 2
|
| 8 | df-ne 2377 |
. . 3
| |
| 9 | 0z 9383 |
. . . . . . . 8
| |
| 10 | gcddvds 12284 |
. . . . . . . 8
| |
| 11 | 9, 10 | mpan 424 |
. . . . . . 7
|
| 12 | 11 | simprd 114 |
. . . . . 6
|
| 13 | 12 | adantr 276 |
. . . . 5
|
| 14 | gcdcl 12287 |
. . . . . . . . 9
| |
| 15 | 9, 14 | mpan 424 |
. . . . . . . 8
|
| 16 | 15 | nn0zd 9493 |
. . . . . . 7
|
| 17 | dvdsleabs 12156 |
. . . . . . 7
| |
| 18 | 16, 17 | syl3an1 1283 |
. . . . . 6
|
| 19 | 18 | 3anidm12 1308 |
. . . . 5
|
| 20 | 13, 19 | mpd 13 |
. . . 4
|
| 21 | zabscl 11397 |
. . . . . . . 8
| |
| 22 | dvds0 12117 |
. . . . . . . 8
| |
| 23 | 21, 22 | syl 14 |
. . . . . . 7
|
| 24 | iddvds 12115 |
. . . . . . . 8
| |
| 25 | absdvdsb 12120 |
. . . . . . . . 9
| |
| 26 | 25 | anidms 397 |
. . . . . . . 8
|
| 27 | 24, 26 | mpbid 147 |
. . . . . . 7
|
| 28 | 23, 27 | jca 306 |
. . . . . 6
|
| 29 | 28 | adantr 276 |
. . . . 5
|
| 30 | eqid 2205 |
. . . . . . . . 9
| |
| 31 | 30 | biantrur 303 |
. . . . . . . 8
|
| 32 | 31 | necon3abii 2412 |
. . . . . . 7
|
| 33 | dvdslegcd 12285 |
. . . . . . . . . 10
| |
| 34 | 33 | ex 115 |
. . . . . . . . 9
|
| 35 | 9, 34 | mp3an2 1338 |
. . . . . . . 8
|
| 36 | 21, 35 | mpancom 422 |
. . . . . . 7
|
| 37 | 32, 36 | biimtrid 152 |
. . . . . 6
|
| 38 | 37 | imp 124 |
. . . . 5
|
| 39 | 29, 38 | mpd 13 |
. . . 4
|
| 40 | 16 | zred 9495 |
. . . . . 6
|
| 41 | 21 | zred 9495 |
. . . . . 6
|
| 42 | 40, 41 | letri3d 8188 |
. . . . 5
|
| 43 | 42 | adantr 276 |
. . . 4
|
| 44 | 20, 39, 43 | mpbir2and 947 |
. . 3
|
| 45 | 8, 44 | sylan2br 288 |
. 2
|
| 46 | zdceq 9448 |
. . . 4
| |
| 47 | 9, 46 | mpan2 425 |
. . 3
|
| 48 | exmiddc 838 |
. . 3
| |
| 49 | 47, 48 | syl 14 |
. 2
|
| 50 | 7, 45, 49 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-sup 7086 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-fl 10413 df-mod 10468 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-dvds 12099 df-gcd 12275 |
| This theorem is referenced by: gcdid0 12301 nn0gcdsq 12522 dfphi2 12542 |
| Copyright terms: Public domain | W3C validator |