ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcd0id Unicode version

Theorem gcd0id 11912
Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0id  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )

Proof of Theorem gcd0id
StepHypRef Expression
1 gcd0val 11893 . . . 4  |-  ( 0  gcd  0 )  =  0
2 oveq2 5850 . . . 4  |-  ( N  =  0  ->  (
0  gcd  N )  =  ( 0  gcd  0 ) )
3 fveq2 5486 . . . . 5  |-  ( N  =  0  ->  ( abs `  N )  =  ( abs `  0
) )
4 abs0 11000 . . . . 5  |-  ( abs `  0 )  =  0
53, 4eqtrdi 2215 . . . 4  |-  ( N  =  0  ->  ( abs `  N )  =  0 )
61, 2, 53eqtr4a 2225 . . 3  |-  ( N  =  0  ->  (
0  gcd  N )  =  ( abs `  N
) )
76adantl 275 . 2  |-  ( ( N  e.  ZZ  /\  N  =  0 )  ->  ( 0  gcd 
N )  =  ( abs `  N ) )
8 df-ne 2337 . . 3  |-  ( N  =/=  0  <->  -.  N  =  0 )
9 0z 9202 . . . . . . . 8  |-  0  e.  ZZ
10 gcddvds 11896 . . . . . . . 8  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  gcd 
N )  ||  0  /\  ( 0  gcd  N
)  ||  N )
)
119, 10mpan 421 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( 0  gcd  N
)  ||  0  /\  ( 0  gcd  N
)  ||  N )
)
1211simprd 113 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  ||  N )
1312adantr 274 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( 0  gcd  N
)  ||  N )
14 gcdcl 11899 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  gcd  N
)  e.  NN0 )
159, 14mpan 421 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  e.  NN0 )
1615nn0zd 9311 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  e.  ZZ )
17 dvdsleabs 11783 . . . . . . 7  |-  ( ( ( 0  gcd  N
)  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( 0  gcd  N
)  ||  N  ->  ( 0  gcd  N )  <_  ( abs `  N
) ) )
1816, 17syl3an1 1261 . . . . . 6  |-  ( ( N  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( 0  gcd  N
)  ||  N  ->  ( 0  gcd  N )  <_  ( abs `  N
) ) )
19183anidm12 1285 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( 0  gcd 
N )  ||  N  ->  ( 0  gcd  N
)  <_  ( abs `  N ) ) )
2013, 19mpd 13 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( 0  gcd  N
)  <_  ( abs `  N ) )
21 zabscl 11028 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  ZZ )
22 dvds0 11746 . . . . . . . 8  |-  ( ( abs `  N )  e.  ZZ  ->  ( abs `  N )  ||  0 )
2321, 22syl 14 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  ||  0 )
24 iddvds 11744 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  ||  N )
25 absdvdsb 11749 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  ||  N  <->  ( abs `  N ) 
||  N ) )
2625anidms 395 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  ||  N  <->  ( abs `  N )  ||  N
) )
2724, 26mpbid 146 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  ||  N )
2823, 27jca 304 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N ) )
2928adantr 274 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N ) )
30 eqid 2165 . . . . . . . . 9  |-  0  =  0
3130biantrur 301 . . . . . . . 8  |-  ( N  =  0  <->  ( 0  =  0  /\  N  =  0 ) )
3231necon3abii 2372 . . . . . . 7  |-  ( N  =/=  0  <->  -.  (
0  =  0  /\  N  =  0 ) )
33 dvdslegcd 11897 . . . . . . . . . 10  |-  ( ( ( ( abs `  N
)  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( 0  =  0  /\  N  =  0 ) )  ->  (
( ( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) )
3433ex 114 . . . . . . . . 9  |-  ( ( ( abs `  N
)  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( 0  =  0  /\  N  =  0 )  ->  ( (
( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
359, 34mp3an2 1315 . . . . . . . 8  |-  ( ( ( abs `  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( 0  =  0  /\  N  =  0 )  -> 
( ( ( abs `  N )  ||  0  /\  ( abs `  N
)  ||  N )  ->  ( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
3621, 35mpancom 419 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( -.  ( 0  =  0  /\  N  =  0 )  ->  ( (
( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
3732, 36syl5bi 151 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  =/=  0  ->  (
( ( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
3837imp 123 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( ( abs `  N )  ||  0  /\  ( abs `  N
)  ||  N )  ->  ( abs `  N
)  <_  ( 0  gcd  N ) ) )
3929, 38mpd 13 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) )
4016zred 9313 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  e.  RR )
4121zred 9313 . . . . . 6  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
4240, 41letri3d 8014 . . . . 5  |-  ( N  e.  ZZ  ->  (
( 0  gcd  N
)  =  ( abs `  N )  <->  ( (
0  gcd  N )  <_  ( abs `  N
)  /\  ( abs `  N )  <_  (
0  gcd  N )
) ) )
4342adantr 274 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( 0  gcd 
N )  =  ( abs `  N )  <-> 
( ( 0  gcd 
N )  <_  ( abs `  N )  /\  ( abs `  N )  <_  ( 0  gcd 
N ) ) ) )
4420, 39, 43mpbir2and 934 . . 3  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( 0  gcd  N
)  =  ( abs `  N ) )
458, 44sylan2br 286 . 2  |-  ( ( N  e.  ZZ  /\  -.  N  =  0
)  ->  ( 0  gcd  N )  =  ( abs `  N
) )
46 zdceq 9266 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
479, 46mpan2 422 . . 3  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
48 exmiddc 826 . . 3  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
4947, 48syl 14 . 2  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  -.  N  =  0
) )
507, 45, 49mpjaodan 788 1  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   0cc0 7753    <_ cle 7934   NN0cn0 9114   ZZcz 9191   abscabs 10939    || cdvds 11727    gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by:  gcdid0  11913  nn0gcdsq  12132  dfphi2  12152
  Copyright terms: Public domain W3C validator