ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcd0id Unicode version

Theorem gcd0id 12495
Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0id  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )

Proof of Theorem gcd0id
StepHypRef Expression
1 gcd0val 12476 . . . 4  |-  ( 0  gcd  0 )  =  0
2 oveq2 6008 . . . 4  |-  ( N  =  0  ->  (
0  gcd  N )  =  ( 0  gcd  0 ) )
3 fveq2 5626 . . . . 5  |-  ( N  =  0  ->  ( abs `  N )  =  ( abs `  0
) )
4 abs0 11564 . . . . 5  |-  ( abs `  0 )  =  0
53, 4eqtrdi 2278 . . . 4  |-  ( N  =  0  ->  ( abs `  N )  =  0 )
61, 2, 53eqtr4a 2288 . . 3  |-  ( N  =  0  ->  (
0  gcd  N )  =  ( abs `  N
) )
76adantl 277 . 2  |-  ( ( N  e.  ZZ  /\  N  =  0 )  ->  ( 0  gcd 
N )  =  ( abs `  N ) )
8 df-ne 2401 . . 3  |-  ( N  =/=  0  <->  -.  N  =  0 )
9 0z 9453 . . . . . . . 8  |-  0  e.  ZZ
10 gcddvds 12479 . . . . . . . 8  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  gcd 
N )  ||  0  /\  ( 0  gcd  N
)  ||  N )
)
119, 10mpan 424 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( 0  gcd  N
)  ||  0  /\  ( 0  gcd  N
)  ||  N )
)
1211simprd 114 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  ||  N )
1312adantr 276 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( 0  gcd  N
)  ||  N )
14 gcdcl 12482 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  gcd  N
)  e.  NN0 )
159, 14mpan 424 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  e.  NN0 )
1615nn0zd 9563 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  e.  ZZ )
17 dvdsleabs 12351 . . . . . . 7  |-  ( ( ( 0  gcd  N
)  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( 0  gcd  N
)  ||  N  ->  ( 0  gcd  N )  <_  ( abs `  N
) ) )
1816, 17syl3an1 1304 . . . . . 6  |-  ( ( N  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( 0  gcd  N
)  ||  N  ->  ( 0  gcd  N )  <_  ( abs `  N
) ) )
19183anidm12 1329 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( 0  gcd 
N )  ||  N  ->  ( 0  gcd  N
)  <_  ( abs `  N ) ) )
2013, 19mpd 13 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( 0  gcd  N
)  <_  ( abs `  N ) )
21 zabscl 11592 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  ZZ )
22 dvds0 12312 . . . . . . . 8  |-  ( ( abs `  N )  e.  ZZ  ->  ( abs `  N )  ||  0 )
2321, 22syl 14 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  ||  0 )
24 iddvds 12310 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  ||  N )
25 absdvdsb 12315 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  ||  N  <->  ( abs `  N ) 
||  N ) )
2625anidms 397 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  ||  N  <->  ( abs `  N )  ||  N
) )
2724, 26mpbid 147 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  ||  N )
2823, 27jca 306 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N ) )
2928adantr 276 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N ) )
30 eqid 2229 . . . . . . . . 9  |-  0  =  0
3130biantrur 303 . . . . . . . 8  |-  ( N  =  0  <->  ( 0  =  0  /\  N  =  0 ) )
3231necon3abii 2436 . . . . . . 7  |-  ( N  =/=  0  <->  -.  (
0  =  0  /\  N  =  0 ) )
33 dvdslegcd 12480 . . . . . . . . . 10  |-  ( ( ( ( abs `  N
)  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( 0  =  0  /\  N  =  0 ) )  ->  (
( ( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) )
3433ex 115 . . . . . . . . 9  |-  ( ( ( abs `  N
)  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( 0  =  0  /\  N  =  0 )  ->  ( (
( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
359, 34mp3an2 1359 . . . . . . . 8  |-  ( ( ( abs `  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( 0  =  0  /\  N  =  0 )  -> 
( ( ( abs `  N )  ||  0  /\  ( abs `  N
)  ||  N )  ->  ( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
3621, 35mpancom 422 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( -.  ( 0  =  0  /\  N  =  0 )  ->  ( (
( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
3732, 36biimtrid 152 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  =/=  0  ->  (
( ( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
3837imp 124 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( ( abs `  N )  ||  0  /\  ( abs `  N
)  ||  N )  ->  ( abs `  N
)  <_  ( 0  gcd  N ) ) )
3929, 38mpd 13 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) )
4016zred 9565 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  e.  RR )
4121zred 9565 . . . . . 6  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
4240, 41letri3d 8258 . . . . 5  |-  ( N  e.  ZZ  ->  (
( 0  gcd  N
)  =  ( abs `  N )  <->  ( (
0  gcd  N )  <_  ( abs `  N
)  /\  ( abs `  N )  <_  (
0  gcd  N )
) ) )
4342adantr 276 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( 0  gcd 
N )  =  ( abs `  N )  <-> 
( ( 0  gcd 
N )  <_  ( abs `  N )  /\  ( abs `  N )  <_  ( 0  gcd 
N ) ) ) )
4420, 39, 43mpbir2and 950 . . 3  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( 0  gcd  N
)  =  ( abs `  N ) )
458, 44sylan2br 288 . 2  |-  ( ( N  e.  ZZ  /\  -.  N  =  0
)  ->  ( 0  gcd  N )  =  ( abs `  N
) )
46 zdceq 9518 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
479, 46mpan2 425 . . 3  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
48 exmiddc 841 . . 3  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
4947, 48syl 14 . 2  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  -.  N  =  0
) )
507, 45, 49mpjaodan 803 1  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   0cc0 7995    <_ cle 8178   NN0cn0 9365   ZZcz 9442   abscabs 11503    || cdvds 12293    gcd cgcd 12469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470
This theorem is referenced by:  gcdid0  12496  nn0gcdsq  12717  dfphi2  12737
  Copyright terms: Public domain W3C validator