ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcd0id Unicode version

Theorem gcd0id 12385
Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0id  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )

Proof of Theorem gcd0id
StepHypRef Expression
1 gcd0val 12366 . . . 4  |-  ( 0  gcd  0 )  =  0
2 oveq2 5970 . . . 4  |-  ( N  =  0  ->  (
0  gcd  N )  =  ( 0  gcd  0 ) )
3 fveq2 5594 . . . . 5  |-  ( N  =  0  ->  ( abs `  N )  =  ( abs `  0
) )
4 abs0 11454 . . . . 5  |-  ( abs `  0 )  =  0
53, 4eqtrdi 2255 . . . 4  |-  ( N  =  0  ->  ( abs `  N )  =  0 )
61, 2, 53eqtr4a 2265 . . 3  |-  ( N  =  0  ->  (
0  gcd  N )  =  ( abs `  N
) )
76adantl 277 . 2  |-  ( ( N  e.  ZZ  /\  N  =  0 )  ->  ( 0  gcd 
N )  =  ( abs `  N ) )
8 df-ne 2378 . . 3  |-  ( N  =/=  0  <->  -.  N  =  0 )
9 0z 9413 . . . . . . . 8  |-  0  e.  ZZ
10 gcddvds 12369 . . . . . . . 8  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  gcd 
N )  ||  0  /\  ( 0  gcd  N
)  ||  N )
)
119, 10mpan 424 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( 0  gcd  N
)  ||  0  /\  ( 0  gcd  N
)  ||  N )
)
1211simprd 114 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  ||  N )
1312adantr 276 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( 0  gcd  N
)  ||  N )
14 gcdcl 12372 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  gcd  N
)  e.  NN0 )
159, 14mpan 424 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  e.  NN0 )
1615nn0zd 9523 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  e.  ZZ )
17 dvdsleabs 12241 . . . . . . 7  |-  ( ( ( 0  gcd  N
)  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( 0  gcd  N
)  ||  N  ->  ( 0  gcd  N )  <_  ( abs `  N
) ) )
1816, 17syl3an1 1283 . . . . . 6  |-  ( ( N  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( 0  gcd  N
)  ||  N  ->  ( 0  gcd  N )  <_  ( abs `  N
) ) )
19183anidm12 1308 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( 0  gcd 
N )  ||  N  ->  ( 0  gcd  N
)  <_  ( abs `  N ) ) )
2013, 19mpd 13 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( 0  gcd  N
)  <_  ( abs `  N ) )
21 zabscl 11482 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  ZZ )
22 dvds0 12202 . . . . . . . 8  |-  ( ( abs `  N )  e.  ZZ  ->  ( abs `  N )  ||  0 )
2321, 22syl 14 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  ||  0 )
24 iddvds 12200 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  ||  N )
25 absdvdsb 12205 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  ||  N  <->  ( abs `  N ) 
||  N ) )
2625anidms 397 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  ||  N  <->  ( abs `  N )  ||  N
) )
2724, 26mpbid 147 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( abs `  N )  ||  N )
2823, 27jca 306 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N ) )
2928adantr 276 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N ) )
30 eqid 2206 . . . . . . . . 9  |-  0  =  0
3130biantrur 303 . . . . . . . 8  |-  ( N  =  0  <->  ( 0  =  0  /\  N  =  0 ) )
3231necon3abii 2413 . . . . . . 7  |-  ( N  =/=  0  <->  -.  (
0  =  0  /\  N  =  0 ) )
33 dvdslegcd 12370 . . . . . . . . . 10  |-  ( ( ( ( abs `  N
)  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( 0  =  0  /\  N  =  0 ) )  ->  (
( ( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) )
3433ex 115 . . . . . . . . 9  |-  ( ( ( abs `  N
)  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( 0  =  0  /\  N  =  0 )  ->  ( (
( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
359, 34mp3an2 1338 . . . . . . . 8  |-  ( ( ( abs `  N
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( 0  =  0  /\  N  =  0 )  -> 
( ( ( abs `  N )  ||  0  /\  ( abs `  N
)  ||  N )  ->  ( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
3621, 35mpancom 422 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( -.  ( 0  =  0  /\  N  =  0 )  ->  ( (
( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
3732, 36biimtrid 152 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  =/=  0  ->  (
( ( abs `  N
)  ||  0  /\  ( abs `  N ) 
||  N )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) ) ) )
3837imp 124 . . . . 5  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( ( abs `  N )  ||  0  /\  ( abs `  N
)  ||  N )  ->  ( abs `  N
)  <_  ( 0  gcd  N ) ) )
3929, 38mpd 13 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  <_  ( 0  gcd  N ) )
4016zred 9525 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  e.  RR )
4121zred 9525 . . . . . 6  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
4240, 41letri3d 8218 . . . . 5  |-  ( N  e.  ZZ  ->  (
( 0  gcd  N
)  =  ( abs `  N )  <->  ( (
0  gcd  N )  <_  ( abs `  N
)  /\  ( abs `  N )  <_  (
0  gcd  N )
) ) )
4342adantr 276 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( ( 0  gcd 
N )  =  ( abs `  N )  <-> 
( ( 0  gcd 
N )  <_  ( abs `  N )  /\  ( abs `  N )  <_  ( 0  gcd 
N ) ) ) )
4420, 39, 43mpbir2and 947 . . 3  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( 0  gcd  N
)  =  ( abs `  N ) )
458, 44sylan2br 288 . 2  |-  ( ( N  e.  ZZ  /\  -.  N  =  0
)  ->  ( 0  gcd  N )  =  ( abs `  N
) )
46 zdceq 9478 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
479, 46mpan2 425 . . 3  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
48 exmiddc 838 . . 3  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
4947, 48syl 14 . 2  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  -.  N  =  0
) )
507, 45, 49mpjaodan 800 1  |-  ( N  e.  ZZ  ->  (
0  gcd  N )  =  ( abs `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   class class class wbr 4054   ` cfv 5285  (class class class)co 5962   0cc0 7955    <_ cle 8138   NN0cn0 9325   ZZcz 9402   abscabs 11393    || cdvds 12183    gcd cgcd 12359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-sup 7107  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fzo 10295  df-fl 10445  df-mod 10500  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-dvds 12184  df-gcd 12360
This theorem is referenced by:  gcdid0  12386  nn0gcdsq  12607  dfphi2  12627
  Copyright terms: Public domain W3C validator