ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nesym Unicode version

Theorem nesym 2390
Description: Characterization of inequality in terms of reversed equality (see bicom 140). (Contributed by BJ, 7-Jul-2018.)
Assertion
Ref Expression
nesym  |-  ( A  =/=  B  <->  -.  B  =  A )

Proof of Theorem nesym
StepHypRef Expression
1 eqcom 2177 . 2  |-  ( A  =  B  <->  B  =  A )
21necon3abii 2381 1  |-  ( A  =/=  B  <->  -.  B  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    = wceq 1353    =/= wne 2345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1445  ax-gen 1447  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-cleq 2168  df-ne 2346
This theorem is referenced by:  nesymi  2391  nesymir  2392  0neqopab  5910  fzdifsuc  10049  isprm3  12083
  Copyright terms: Public domain W3C validator