ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelcon3d Unicode version

Theorem nelcon3d 2446
Description: Contrapositive law deduction for negated membership. (Contributed by AV, 28-Jan-2020.)
Hypothesis
Ref Expression
nelcon3d.1  |-  ( ph  ->  ( A  e.  B  ->  C  e.  D ) )
Assertion
Ref Expression
nelcon3d  |-  ( ph  ->  ( C  e/  D  ->  A  e/  B ) )

Proof of Theorem nelcon3d
StepHypRef Expression
1 nelcon3d.1 . . 3  |-  ( ph  ->  ( A  e.  B  ->  C  e.  D ) )
21con3d 626 . 2  |-  ( ph  ->  ( -.  C  e.  D  ->  -.  A  e.  B ) )
3 df-nel 2436 . 2  |-  ( C  e/  D  <->  -.  C  e.  D )
4 df-nel 2436 . 2  |-  ( A  e/  B  <->  -.  A  e.  B )
52, 3, 43imtr4g 204 1  |-  ( ph  ->  ( C  e/  D  ->  A  e/  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2141    e/ wnel 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-nel 2436
This theorem is referenced by:  isnmgm  12614
  Copyright terms: Public domain W3C validator