ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnelne2 Unicode version

Theorem elnelne2 2505
Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne2  |-  ( ( A  e.  C  /\  B  e/  C )  ->  A  =/=  B )

Proof of Theorem elnelne2
StepHypRef Expression
1 df-nel 2496 . 2  |-  ( B  e/  C  <->  -.  B  e.  C )
2 nelne2 2491 . 2  |-  ( ( A  e.  C  /\  -.  B  e.  C
)  ->  A  =/=  B )
31, 2sylan2b 287 1  |-  ( ( A  e.  C  /\  B  e/  C )  ->  A  =/=  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2200    =/= wne 2400    e/ wnel 2495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225  df-ne 2401  df-nel 2496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator