![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4g | Unicode version |
Description: More general version of 3imtr4i 201. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr4g.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3imtr4g.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3imtr4g.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3imtr4g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4g.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3imtr4g.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | biimtrid 152 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3imtr4g.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | imbitrrdi 162 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3anim123d 1319 3orim123d 1320 hbbid 1575 spsbim 1843 moim 2090 moimv 2092 2euswapdc 2117 nelcon3d 2453 ralim 2536 ralimdaa 2543 ralimdv2 2547 rexim 2571 reximdv2 2576 rmoim 2940 ssel 3151 sstr2 3164 ssrexf 3219 ssrmof 3220 sscon 3271 ssdif 3272 unss1 3306 ssrin 3362 prel12 3773 uniss 3832 ssuni 3833 intss 3867 intssunim 3868 iunss1 3899 iinss1 3900 ss2iun 3903 disjss2 3985 disjss1 3988 ssbrd 4048 sspwb 4218 poss 4300 pofun 4314 soss 4316 sess1 4339 sess2 4340 ordwe 4577 wessep 4579 peano2 4596 finds 4601 finds2 4602 relss 4715 ssrel 4716 ssrel2 4718 ssrelrel 4728 xpsspw 4740 relop 4779 cnvss 4802 dmss 4828 dmcosseq 4900 funss 5237 imadif 5298 imain 5300 fss 5379 fun 5390 brprcneu 5510 isores3 5818 isopolem 5825 isosolem 5827 tposfn2 6269 tposfo2 6270 tposf1o2 6273 smores 6295 tfr1onlemaccex 6351 tfrcllemaccex 6364 iinerm 6609 xpdom2 6833 ssenen 6853 exmidpw 6910 exmidpweq 6911 nnnninfeq2 7129 recexprlemlol 7627 recexprlemupu 7629 axpre-ltwlin 7884 axpre-apti 7886 nnindnn 7894 nnind 8937 uzind 9366 hashfacen 10818 cau3lem 11125 tgcl 13649 epttop 13675 txcnp 13856 |
Copyright terms: Public domain | W3C validator |