Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr4g | Unicode version |
Description: More general version of 3imtr4i 200. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr4g.1 | |
3imtr4g.2 | |
3imtr4g.3 |
Ref | Expression |
---|---|
3imtr4g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4g.2 | . . 3 | |
2 | 3imtr4g.1 | . . 3 | |
3 | 1, 2 | syl5bi 151 | . 2 |
4 | 3imtr4g.3 | . 2 | |
5 | 3, 4 | syl6ibr 161 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3anim123d 1314 3orim123d 1315 hbbid 1568 spsbim 1836 moim 2083 moimv 2085 2euswapdc 2110 nelcon3d 2446 ralim 2529 ralimdaa 2536 ralimdv2 2540 rexim 2564 reximdv2 2569 rmoim 2931 ssel 3141 sstr2 3154 ssrexf 3209 ssrmof 3210 sscon 3261 ssdif 3262 unss1 3296 ssrin 3352 prel12 3756 uniss 3815 ssuni 3816 intss 3850 intssunim 3851 iunss1 3882 iinss1 3883 ss2iun 3886 disjss2 3967 disjss1 3970 ssbrd 4030 sspwb 4199 poss 4281 pofun 4295 soss 4297 sess1 4320 sess2 4321 ordwe 4558 wessep 4560 peano2 4577 finds 4582 finds2 4583 relss 4696 ssrel 4697 ssrel2 4699 ssrelrel 4709 xpsspw 4721 relop 4759 cnvss 4782 dmss 4808 dmcosseq 4880 funss 5215 imadif 5276 imain 5278 fss 5357 fun 5368 brprcneu 5487 isores3 5791 isopolem 5798 isosolem 5800 tposfn2 6242 tposfo2 6243 tposf1o2 6246 smores 6268 tfr1onlemaccex 6324 tfrcllemaccex 6337 iinerm 6581 xpdom2 6805 ssenen 6825 exmidpw 6882 exmidpweq 6883 nnnninfeq2 7101 recexprlemlol 7575 recexprlemupu 7577 axpre-ltwlin 7832 axpre-apti 7834 nnindnn 7842 nnind 8881 uzind 9310 hashfacen 10758 cau3lem 11065 tgcl 12779 epttop 12805 txcnp 12986 |
Copyright terms: Public domain | W3C validator |