![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nf2 | Unicode version |
Description: An alternate definition of df-nf 1405, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nf2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1405 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfa1 1489 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | nfri 1467 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | 19.23h 1442 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | bitri 183 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1393 ax-ie2 1438 ax-4 1455 ax-ial 1482 |
This theorem depends on definitions: df-bi 116 df-nf 1405 |
This theorem is referenced by: nf3 1615 nf4dc 1616 nf4r 1617 eusv2i 4314 |
Copyright terms: Public domain | W3C validator |