ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf2 Unicode version

Theorem nf2 1656
Description: An alternate definition of df-nf 1449, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.)
Assertion
Ref Expression
nf2  |-  ( F/ x ph  <->  ( E. x ph  ->  A. x ph ) )

Proof of Theorem nf2
StepHypRef Expression
1 df-nf 1449 . 2  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
2 nfa1 1529 . . . 4  |-  F/ x A. x ph
32nfri 1507 . . 3  |-  ( A. x ph  ->  A. x A. x ph )
4319.23h 1486 . 2  |-  ( A. x ( ph  ->  A. x ph )  <->  ( E. x ph  ->  A. x ph ) )
51, 4bitri 183 1  |-  ( F/ x ph  <->  ( E. x ph  ->  A. x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341   F/wnf 1448   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1437  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  nf3  1657  nf4dc  1658  nf4r  1659  nfd2  2010  eusv2i  4433
  Copyright terms: Public domain W3C validator