ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv2i Unicode version

Theorem eusv2i 4433
Description: Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusv2i  |-  ( E! y A. x  y  =  A  ->  E! y E. x  y  =  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusv2i
StepHypRef Expression
1 nfeu1 2025 . . 3  |-  F/ y E! y A. x  y  =  A
2 nfcvd 2309 . . . . . 6  |-  ( E! y A. x  y  =  A  ->  F/_ x
y )
3 eusvnf 4431 . . . . . 6  |-  ( E! y A. x  y  =  A  ->  F/_ x A )
42, 3nfeqd 2323 . . . . 5  |-  ( E! y A. x  y  =  A  ->  F/ x  y  =  A
)
5 nf2 1656 . . . . 5  |-  ( F/ x  y  =  A  <-> 
( E. x  y  =  A  ->  A. x  y  =  A )
)
64, 5sylib 121 . . . 4  |-  ( E! y A. x  y  =  A  ->  ( E. x  y  =  A  ->  A. x  y  =  A ) )
7 19.2 1626 . . . 4  |-  ( A. x  y  =  A  ->  E. x  y  =  A )
86, 7impbid1 141 . . 3  |-  ( E! y A. x  y  =  A  ->  ( E. x  y  =  A 
<-> 
A. x  y  =  A ) )
91, 8eubid 2021 . 2  |-  ( E! y A. x  y  =  A  ->  ( E! y E. x  y  =  A  <->  E! y A. x  y  =  A ) )
109ibir 176 1  |-  ( E! y A. x  y  =  A  ->  E! y E. x  y  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341    = wceq 1343   F/wnf 1448   E.wex 1480   E!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  eusv2nf  4434
  Copyright terms: Public domain W3C validator