ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv2i Unicode version

Theorem eusv2i 4502
Description: Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusv2i  |-  ( E! y A. x  y  =  A  ->  E! y E. x  y  =  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusv2i
StepHypRef Expression
1 nfeu1 2065 . . 3  |-  F/ y E! y A. x  y  =  A
2 nfcvd 2349 . . . . . 6  |-  ( E! y A. x  y  =  A  ->  F/_ x
y )
3 eusvnf 4500 . . . . . 6  |-  ( E! y A. x  y  =  A  ->  F/_ x A )
42, 3nfeqd 2363 . . . . 5  |-  ( E! y A. x  y  =  A  ->  F/ x  y  =  A
)
5 nf2 1691 . . . . 5  |-  ( F/ x  y  =  A  <-> 
( E. x  y  =  A  ->  A. x  y  =  A )
)
64, 5sylib 122 . . . 4  |-  ( E! y A. x  y  =  A  ->  ( E. x  y  =  A  ->  A. x  y  =  A ) )
7 19.2 1661 . . . 4  |-  ( A. x  y  =  A  ->  E. x  y  =  A )
86, 7impbid1 142 . . 3  |-  ( E! y A. x  y  =  A  ->  ( E. x  y  =  A 
<-> 
A. x  y  =  A ) )
91, 8eubid 2061 . 2  |-  ( E! y A. x  y  =  A  ->  ( E! y E. x  y  =  A  <->  E! y A. x  y  =  A ) )
109ibir 177 1  |-  ( E! y A. x  y  =  A  ->  E! y E. x  y  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    = wceq 1373   F/wnf 1483   E.wex 1515   E!weu 2054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sbc 2999  df-csb 3094
This theorem is referenced by:  eusv2nf  4503
  Copyright terms: Public domain W3C validator