Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eusv2i | Unicode version |
Description: Two ways to express single-valuedness of a class expression . (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2035 | . . 3 | |
2 | nfcvd 2318 | . . . . . 6 | |
3 | eusvnf 4447 | . . . . . 6 | |
4 | 2, 3 | nfeqd 2332 | . . . . 5 |
5 | nf2 1666 | . . . . 5 | |
6 | 4, 5 | sylib 122 | . . . 4 |
7 | 19.2 1636 | . . . 4 | |
8 | 6, 7 | impbid1 142 | . . 3 |
9 | 1, 8 | eubid 2031 | . 2 |
10 | 9 | ibir 177 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1351 wceq 1353 wnf 1458 wex 1490 weu 2024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sbc 2961 df-csb 3056 |
This theorem is referenced by: eusv2nf 4450 |
Copyright terms: Public domain | W3C validator |