ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv2i Unicode version

Theorem eusv2i 4490
Description: Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusv2i  |-  ( E! y A. x  y  =  A  ->  E! y E. x  y  =  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusv2i
StepHypRef Expression
1 nfeu1 2056 . . 3  |-  F/ y E! y A. x  y  =  A
2 nfcvd 2340 . . . . . 6  |-  ( E! y A. x  y  =  A  ->  F/_ x
y )
3 eusvnf 4488 . . . . . 6  |-  ( E! y A. x  y  =  A  ->  F/_ x A )
42, 3nfeqd 2354 . . . . 5  |-  ( E! y A. x  y  =  A  ->  F/ x  y  =  A
)
5 nf2 1682 . . . . 5  |-  ( F/ x  y  =  A  <-> 
( E. x  y  =  A  ->  A. x  y  =  A )
)
64, 5sylib 122 . . . 4  |-  ( E! y A. x  y  =  A  ->  ( E. x  y  =  A  ->  A. x  y  =  A ) )
7 19.2 1652 . . . 4  |-  ( A. x  y  =  A  ->  E. x  y  =  A )
86, 7impbid1 142 . . 3  |-  ( E! y A. x  y  =  A  ->  ( E. x  y  =  A 
<-> 
A. x  y  =  A ) )
91, 8eubid 2052 . 2  |-  ( E! y A. x  y  =  A  ->  ( E! y E. x  y  =  A  <->  E! y A. x  y  =  A ) )
109ibir 177 1  |-  ( E! y A. x  y  =  A  ->  E! y E. x  y  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362    = wceq 1364   F/wnf 1474   E.wex 1506   E!weu 2045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by:  eusv2nf  4491
  Copyright terms: Public domain W3C validator