Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eusv2i | Unicode version |
Description: Two ways to express single-valuedness of a class expression . (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2030 | . . 3 | |
2 | nfcvd 2313 | . . . . . 6 | |
3 | eusvnf 4438 | . . . . . 6 | |
4 | 2, 3 | nfeqd 2327 | . . . . 5 |
5 | nf2 1661 | . . . . 5 | |
6 | 4, 5 | sylib 121 | . . . 4 |
7 | 19.2 1631 | . . . 4 | |
8 | 6, 7 | impbid1 141 | . . 3 |
9 | 1, 8 | eubid 2026 | . 2 |
10 | 9 | ibir 176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wceq 1348 wnf 1453 wex 1485 weu 2019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: eusv2nf 4441 |
Copyright terms: Public domain | W3C validator |