ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf4r Unicode version

Theorem nf4r 1650
Description: If  ph is always true or always false, then variable  x is effectively not free in 
ph. The converse holds given a decidability condition, as seen at nf4dc 1649. (Contributed by Jim Kingdon, 21-Jul-2018.)
Assertion
Ref Expression
nf4r  |-  ( ( A. x ph  \/  A. x  -.  ph )  ->  F/ x ph )

Proof of Theorem nf4r
StepHypRef Expression
1 orcom 718 . . 3  |-  ( ( -.  E. x ph  \/  A. x ph )  <->  ( A. x ph  \/  -.  E. x ph )
)
2 alnex 1476 . . . 4  |-  ( A. x  -.  ph  <->  -.  E. x ph )
32orbi2i 752 . . 3  |-  ( ( A. x ph  \/  A. x  -.  ph )  <->  ( A. x ph  \/  -.  E. x ph )
)
41, 3bitr4i 186 . 2  |-  ( ( -.  E. x ph  \/  A. x ph )  <->  ( A. x ph  \/  A. x  -.  ph )
)
5 imorr 711 . . 3  |-  ( ( -.  E. x ph  \/  A. x ph )  ->  ( E. x ph  ->  A. x ph )
)
6 nf2 1647 . . 3  |-  ( F/ x ph  <->  ( E. x ph  ->  A. x ph ) )
75, 6sylibr 133 . 2  |-  ( ( -.  E. x ph  \/  A. x ph )  ->  F/ x ph )
84, 7sylbir 134 1  |-  ( ( A. x ph  \/  A. x  -.  ph )  ->  F/ x ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698   A.wal 1330   F/wnf 1437   E.wex 1469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-gen 1426  ax-ie2 1471  ax-4 1488  ax-ial 1515
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-fal 1338  df-nf 1438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator