ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23h Unicode version

Theorem 19.23h 1486
Description: Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 1-Feb-2015.)
Hypothesis
Ref Expression
19.23h.1  |-  ( ps 
->  A. x ps )
Assertion
Ref Expression
19.23h  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )

Proof of Theorem 19.23h
StepHypRef Expression
1 19.23h.1 . . 3  |-  ( ps 
->  A. x ps )
21ax-gen 1437 . 2  |-  A. x
( ps  ->  A. x ps )
3 19.23ht 1485 . 2  |-  ( A. x ( ps  ->  A. x ps )  -> 
( A. x (
ph  ->  ps )  <->  ( E. x ph  ->  ps )
) )
42, 3ax-mp 5 1  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-gen 1437  ax-ie2 1482
This theorem is referenced by:  alnex  1487  19.8a  1578  exlimih  1581  exlimdh  1584  nf2  1656  equs5or  1818  19.23v  1871  pm11.53  1883
  Copyright terms: Public domain W3C validator