ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbe1a Unicode version

Theorem hbe1a 2052
Description: Dual statement of hbe1 1519. (Contributed by Wolf Lammen, 15-Sep-2021.)
Assertion
Ref Expression
hbe1a  |-  ( E. x A. x ph  ->  A. x ph )

Proof of Theorem hbe1a
StepHypRef Expression
1 nfa1 1565 . . 3  |-  F/ x A. x ph
2 nf3 1693 . . 3  |-  ( F/ x A. x ph  <->  A. x ( E. x A. x ph  ->  A. x ph ) )
31, 2mpbi 145 . 2  |-  A. x
( E. x A. x ph  ->  A. x ph )
43spi 1560 1  |-  ( E. x A. x ph  ->  A. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   F/wnf 1484   E.wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  nf5-1  2053
  Copyright terms: Public domain W3C validator