ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbe1a Unicode version

Theorem hbe1a 2074
Description: Dual statement of hbe1 1541. (Contributed by Wolf Lammen, 15-Sep-2021.)
Assertion
Ref Expression
hbe1a  |-  ( E. x A. x ph  ->  A. x ph )

Proof of Theorem hbe1a
StepHypRef Expression
1 nfa1 1587 . . 3  |-  F/ x A. x ph
2 nf3 1715 . . 3  |-  ( F/ x A. x ph  <->  A. x ( E. x A. x ph  ->  A. x ph ) )
31, 2mpbi 145 . 2  |-  A. x
( E. x A. x ph  ->  A. x ph )
43spi 1582 1  |-  ( E. x A. x ph  ->  A. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1393   F/wnf 1506   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507
This theorem is referenced by:  nf5-1  2075
  Copyright terms: Public domain W3C validator