ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf5-1 GIF version

Theorem nf5-1 2040
Description: One direction of nf5 . (Contributed by Wolf Lammen, 16-Sep-2021.)
Assertion
Ref Expression
nf5-1 (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)

Proof of Theorem nf5-1
StepHypRef Expression
1 exim 1610 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∃𝑥𝑥𝜑))
2 hbe1a 2039 . . 3 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
31, 2syl6 33 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∀𝑥𝜑))
43nfd2 2038 1 (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wnf 1471  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  nf5d  2041
  Copyright terms: Public domain W3C validator