ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf5-1 GIF version

Theorem nf5-1 2051
Description: One direction of nf5 . (Contributed by Wolf Lammen, 16-Sep-2021.)
Assertion
Ref Expression
nf5-1 (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)

Proof of Theorem nf5-1
StepHypRef Expression
1 exim 1621 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∃𝑥𝑥𝜑))
2 hbe1a 2050 . . 3 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
31, 2syl6 33 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∀𝑥𝜑))
43nfd2 2049 1 (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1370  wnf 1482  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483
This theorem is referenced by:  nf5d  2052
  Copyright terms: Public domain W3C validator