| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nf5-1 | GIF version | ||
| Description: One direction of nf5 . (Contributed by Wolf Lammen, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| nf5-1 | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1623 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∃𝑥∀𝑥𝜑)) | |
| 2 | hbe1a 2052 | . . 3 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | syl6 33 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 4 | 3 | nfd2 2051 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: nf5d 2054 |
| Copyright terms: Public domain | W3C validator |