ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exim Unicode version

Theorem exim 1645
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  E. x ps ) )

Proof of Theorem exim
StepHypRef Expression
1 hba1 1586 . 2  |-  ( A. x ( ph  ->  ps )  ->  A. x A. x ( ph  ->  ps ) )
2 hbe1 1541 . 2  |-  ( E. x ps  ->  A. x E. x ps )
3 19.8a 1636 . . . 4  |-  ( ps 
->  E. x ps )
43imim2i 12 . . 3  |-  ( (
ph  ->  ps )  -> 
( ph  ->  E. x ps ) )
54sps 1583 . 2  |-  ( A. x ( ph  ->  ps )  ->  ( ph  ->  E. x ps )
)
61, 2, 5exlimdh 1642 1  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1393   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  eximi  1646  exbi  1650  eximdh  1657  19.29  1666  19.25  1672  alexim  1691  19.23t  1723  spimt  1782  equvini  1804  nfexd  1807  ax10oe  1843  sbcof2  1856  spsbim  1889  nf5-1  2075  mor  2120  rexim  2624  elex22  2815  elex2  2816  vtoclegft  2875  spcimgft  2879  spcimegft  2881  spc2gv  2894  spc3gv  2896  ssoprab2  6060  bj-inf2vnlem1  16333
  Copyright terms: Public domain W3C validator