ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exim Unicode version

Theorem exim 1587
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  E. x ps ) )

Proof of Theorem exim
StepHypRef Expression
1 hba1 1528 . 2  |-  ( A. x ( ph  ->  ps )  ->  A. x A. x ( ph  ->  ps ) )
2 hbe1 1483 . 2  |-  ( E. x ps  ->  A. x E. x ps )
3 19.8a 1578 . . . 4  |-  ( ps 
->  E. x ps )
43imim2i 12 . . 3  |-  ( (
ph  ->  ps )  -> 
( ph  ->  E. x ps ) )
54sps 1525 . 2  |-  ( A. x ( ph  ->  ps )  ->  ( ph  ->  E. x ps )
)
61, 2, 5exlimdh 1584 1  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  eximi  1588  exbi  1592  eximdh  1599  19.29  1608  19.25  1614  alexim  1633  19.23t  1665  spimt  1724  equvini  1746  nfexd  1749  ax10oe  1785  sbcof2  1798  spsbim  1831  nf5-1  2012  mor  2056  rexim  2560  elex22  2741  elex2  2742  vtoclegft  2798  spcimgft  2802  spcimegft  2804  spc2gv  2817  spc3gv  2819  ssoprab2  5898  bj-inf2vnlem1  13852
  Copyright terms: Public domain W3C validator