ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exim Unicode version

Theorem exim 1622
Description: Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
Assertion
Ref Expression
exim  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  E. x ps ) )

Proof of Theorem exim
StepHypRef Expression
1 hba1 1563 . 2  |-  ( A. x ( ph  ->  ps )  ->  A. x A. x ( ph  ->  ps ) )
2 hbe1 1518 . 2  |-  ( E. x ps  ->  A. x E. x ps )
3 19.8a 1613 . . . 4  |-  ( ps 
->  E. x ps )
43imim2i 12 . . 3  |-  ( (
ph  ->  ps )  -> 
( ph  ->  E. x ps ) )
54sps 1560 . 2  |-  ( A. x ( ph  ->  ps )  ->  ( ph  ->  E. x ps )
)
61, 2, 5exlimdh 1619 1  |-  ( A. x ( ph  ->  ps )  ->  ( E. x ph  ->  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  eximi  1623  exbi  1627  eximdh  1634  19.29  1643  19.25  1649  alexim  1668  19.23t  1700  spimt  1759  equvini  1781  nfexd  1784  ax10oe  1820  sbcof2  1833  spsbim  1866  nf5-1  2052  mor  2096  rexim  2600  elex22  2787  elex2  2788  vtoclegft  2845  spcimgft  2849  spcimegft  2851  spc2gv  2864  spc3gv  2866  ssoprab2  6001  bj-inf2vnlem1  15906
  Copyright terms: Public domain W3C validator