![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfn | Unicode version |
Description: Inference associated with nfnt 1656. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfn.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfn |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfn.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfnt 1656 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-gen 1449 ax-ie2 1494 ax-4 1510 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 |
This theorem is referenced by: nfdc 1659 19.32dc 1679 nfnae 1722 mo2n 2054 nfne 2440 nfnel 2449 nfdif 3258 nfpo 4303 0neqopab 5922 nfsup 6993 ismkvnex 7155 mkvprop 7158 zsupcllemstep 11948 oddpwdclemndvds 12173 ismkvnnlem 14885 |
Copyright terms: Public domain | W3C validator |