![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfn | Unicode version |
Description: Inference associated with nfnt 1667. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfn.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfn |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfn.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfnt 1667 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 |
This theorem is referenced by: nfdc 1670 19.32dc 1690 nfnae 1733 mo2n 2070 nfne 2457 nfnel 2466 nfdif 3280 nfpo 4332 0neqopab 5963 nfsup 7051 ismkvnex 7214 mkvprop 7217 zsupcllemstep 12082 oddpwdclemndvds 12309 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |