ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnf1 Unicode version

Theorem nfnf1 1544
Description:  x is not free in  F/ x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnf1  |-  F/ x F/ x ph

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1461 . 2  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
2 nfa1 1541 . 2  |-  F/ x A. x ( ph  ->  A. x ph )
31, 2nfxfr 1474 1  |-  F/ x F/ x ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351   F/wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  nfimd  1585  nfnt  1656  nfald  1760  equs5or  1830  sbcomxyyz  1972  nfsb4t  2014  nfnfc1  2322  nfabdw  2338  sbcnestgf  3109  dfnfc2  3828  bdsepnft  14642  setindft  14720  strcollnft  14739
  Copyright terms: Public domain W3C validator