![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfnf1 | Unicode version |
Description: ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfnf1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1461 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfa1 1541 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfxfr 1474 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: nfimd 1585 nfnt 1656 nfald 1760 equs5or 1830 sbcomxyyz 1972 nfsb4t 2014 nfnfc1 2322 nfabdw 2338 sbcnestgf 3109 dfnfc2 3828 bdsepnft 14642 setindft 14720 strcollnft 14739 |
Copyright terms: Public domain | W3C validator |