![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfnf1 | Unicode version |
Description: ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfnf1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1395 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfa1 1479 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfxfr 1408 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-nf 1395 |
This theorem is referenced by: nfimd 1522 nfnt 1591 nfald 1690 equs5or 1758 sbcomxyyz 1894 nfsb4t 1938 nfnfc1 2231 sbcnestgf 2979 dfnfc2 3671 bdsepnft 11733 setindft 11815 strcollnft 11834 |
Copyright terms: Public domain | W3C validator |