ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnf1 Unicode version

Theorem nfnf1 1537
Description:  x is not free in  F/ x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnf1  |-  F/ x F/ x ph

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1454 . 2  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
2 nfa1 1534 . 2  |-  F/ x A. x ( ph  ->  A. x ph )
31, 2nfxfr 1467 1  |-  F/ x F/ x ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   F/wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  nfimd  1578  nfnt  1649  nfald  1753  equs5or  1823  sbcomxyyz  1965  nfsb4t  2007  nfnfc1  2315  nfabdw  2331  sbcnestgf  3100  dfnfc2  3814  bdsepnft  13922  setindft  14000  strcollnft  14019
  Copyright terms: Public domain W3C validator