ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notnotd Unicode version

Theorem notnotd 625
Description: Deduction associated with notnot 624 and notnoti 640. (Contributed by Jarvin Udandy, 2-Sep-2016.) Avoid biconditional. (Revised by Wolf Lammen, 27-Mar-2021.)
Hypothesis
Ref Expression
notnotd.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
notnotd  |-  ( ph  ->  -.  -.  ps )

Proof of Theorem notnotd
StepHypRef Expression
1 notnotd.1 . 2  |-  ( ph  ->  ps )
2 notnot 624 . 2  |-  ( ps 
->  -.  -.  ps )
31, 2syl 14 1  |-  ( ph  ->  -.  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 609  ax-in2 610
This theorem is referenced by:  ismkvnex  7131  exmidonfinlem  7170  mod2eq1n2dvds  11838  pceq0  12275
  Copyright terms: Public domain W3C validator