| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notnotd | Unicode version | ||
| Description: Deduction associated with notnot 630 and notnoti 646. (Contributed by Jarvin Udandy, 2-Sep-2016.) Avoid biconditional. (Revised by Wolf Lammen, 27-Mar-2021.) |
| Ref | Expression |
|---|---|
| notnotd.1 |
|
| Ref | Expression |
|---|---|
| notnotd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotd.1 |
. 2
| |
| 2 | notnot 630 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: ismkvnex 7221 exmidonfinlem 7260 xqltnle 10357 mod2eq1n2dvds 12044 bits0e 12113 pceq0 12491 |
| Copyright terms: Public domain | W3C validator |