ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mod2eq1n2dvds Unicode version

Theorem mod2eq1n2dvds 11838
Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
mod2eq1n2dvds  |-  ( N  e.  ZZ  ->  (
( N  mod  2
)  =  1  <->  -.  2  ||  N ) )

Proof of Theorem mod2eq1n2dvds
StepHypRef Expression
1 0ne1 8945 . . . . . 6  |-  0  =/=  1
2 pm13.181 2422 . . . . . 6  |-  ( ( ( N  mod  2
)  =  0  /\  0  =/=  1 )  ->  ( N  mod  2 )  =/=  1
)
31, 2mpan2 423 . . . . 5  |-  ( ( N  mod  2 )  =  0  ->  ( N  mod  2 )  =/=  1 )
43neneqd 2361 . . . 4  |-  ( ( N  mod  2 )  =  0  ->  -.  ( N  mod  2
)  =  1 )
54adantl 275 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  0 )  ->  -.  ( N  mod  2 )  =  1 )
6 mod2eq0even 11837 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N  mod  2
)  =  0  <->  2 
||  N ) )
76biimpa 294 . . . 4  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  0 )  ->  2  ||  N
)
87notnotd 625 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  0 )  ->  -.  -.  2  ||  N )
95, 82falsed 697 . 2  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  0 )  ->  ( ( N  mod  2 )  =  1  <->  -.  2  ||  N ) )
10 simpr 109 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  1 )  ->  ( N  mod  2 )  =  1 )
11 1ne0 8946 . . . . . . 7  |-  1  =/=  0
12 pm13.181 2422 . . . . . . 7  |-  ( ( ( N  mod  2
)  =  1  /\  1  =/=  0 )  ->  ( N  mod  2 )  =/=  0
)
1311, 12mpan2 423 . . . . . 6  |-  ( ( N  mod  2 )  =  1  ->  ( N  mod  2 )  =/=  0 )
1413neneqd 2361 . . . . 5  |-  ( ( N  mod  2 )  =  1  ->  -.  ( N  mod  2
)  =  0 )
1514adantl 275 . . . 4  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  1 )  ->  -.  ( N  mod  2 )  =  0 )
166notbid 662 . . . . 5  |-  ( N  e.  ZZ  ->  ( -.  ( N  mod  2
)  =  0  <->  -.  2  ||  N ) )
1716adantr 274 . . . 4  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  1 )  ->  ( -.  ( N  mod  2 )  =  0  <->  -.  2  ||  N ) )
1815, 17mpbid 146 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  1 )  ->  -.  2  ||  N )
1910, 182thd 174 . 2  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  1 )  ->  ( ( N  mod  2 )  =  1  <->  -.  2  ||  N ) )
20 2nn 9039 . . . . 5  |-  2  e.  NN
21 zmodfz 10302 . . . . 5  |-  ( ( N  e.  ZZ  /\  2  e.  NN )  ->  ( N  mod  2
)  e.  ( 0 ... ( 2  -  1 ) ) )
2220, 21mpan2 423 . . . 4  |-  ( N  e.  ZZ  ->  ( N  mod  2 )  e.  ( 0 ... (
2  -  1 ) ) )
23 2m1e1 8996 . . . . 5  |-  ( 2  -  1 )  =  1
2423oveq2i 5864 . . . 4  |-  ( 0 ... ( 2  -  1 ) )  =  ( 0 ... 1
)
2522, 24eleqtrdi 2263 . . 3  |-  ( N  e.  ZZ  ->  ( N  mod  2 )  e.  ( 0 ... 1
) )
26 fz01or 10067 . . 3  |-  ( ( N  mod  2 )  e.  ( 0 ... 1 )  <->  ( ( N  mod  2 )  =  0  \/  ( N  mod  2 )  =  1 ) )
2725, 26sylib 121 . 2  |-  ( N  e.  ZZ  ->  (
( N  mod  2
)  =  0  \/  ( N  mod  2
)  =  1 ) )
289, 19, 27mpjaodan 793 1  |-  ( N  e.  ZZ  ->  (
( N  mod  2
)  =  1  <->  -.  2  ||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989  (class class class)co 5853   0cc0 7774   1c1 7775    - cmin 8090   NNcn 8878   2c2 8929   ZZcz 9212   ...cfz 9965    mod cmo 10278    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fl 10226  df-mod 10279  df-dvds 11750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator