ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mod2eq1n2dvds Unicode version

Theorem mod2eq1n2dvds 12061
Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
mod2eq1n2dvds  |-  ( N  e.  ZZ  ->  (
( N  mod  2
)  =  1  <->  -.  2  ||  N ) )

Proof of Theorem mod2eq1n2dvds
StepHypRef Expression
1 0ne1 9074 . . . . . 6  |-  0  =/=  1
2 pm13.181 2449 . . . . . 6  |-  ( ( ( N  mod  2
)  =  0  /\  0  =/=  1 )  ->  ( N  mod  2 )  =/=  1
)
31, 2mpan2 425 . . . . 5  |-  ( ( N  mod  2 )  =  0  ->  ( N  mod  2 )  =/=  1 )
43neneqd 2388 . . . 4  |-  ( ( N  mod  2 )  =  0  ->  -.  ( N  mod  2
)  =  1 )
54adantl 277 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  0 )  ->  -.  ( N  mod  2 )  =  1 )
6 mod2eq0even 12060 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N  mod  2
)  =  0  <->  2 
||  N ) )
76biimpa 296 . . . 4  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  0 )  ->  2  ||  N
)
87notnotd 631 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  0 )  ->  -.  -.  2  ||  N )
95, 82falsed 703 . 2  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  0 )  ->  ( ( N  mod  2 )  =  1  <->  -.  2  ||  N ) )
10 simpr 110 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  1 )  ->  ( N  mod  2 )  =  1 )
11 1ne0 9075 . . . . . . 7  |-  1  =/=  0
12 pm13.181 2449 . . . . . . 7  |-  ( ( ( N  mod  2
)  =  1  /\  1  =/=  0 )  ->  ( N  mod  2 )  =/=  0
)
1311, 12mpan2 425 . . . . . 6  |-  ( ( N  mod  2 )  =  1  ->  ( N  mod  2 )  =/=  0 )
1413neneqd 2388 . . . . 5  |-  ( ( N  mod  2 )  =  1  ->  -.  ( N  mod  2
)  =  0 )
1514adantl 277 . . . 4  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  1 )  ->  -.  ( N  mod  2 )  =  0 )
166notbid 668 . . . . 5  |-  ( N  e.  ZZ  ->  ( -.  ( N  mod  2
)  =  0  <->  -.  2  ||  N ) )
1716adantr 276 . . . 4  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  1 )  ->  ( -.  ( N  mod  2 )  =  0  <->  -.  2  ||  N ) )
1815, 17mpbid 147 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  1 )  ->  -.  2  ||  N )
1910, 182thd 175 . 2  |-  ( ( N  e.  ZZ  /\  ( N  mod  2
)  =  1 )  ->  ( ( N  mod  2 )  =  1  <->  -.  2  ||  N ) )
20 2nn 9169 . . . . 5  |-  2  e.  NN
21 zmodfz 10455 . . . . 5  |-  ( ( N  e.  ZZ  /\  2  e.  NN )  ->  ( N  mod  2
)  e.  ( 0 ... ( 2  -  1 ) ) )
2220, 21mpan2 425 . . . 4  |-  ( N  e.  ZZ  ->  ( N  mod  2 )  e.  ( 0 ... (
2  -  1 ) ) )
23 2m1e1 9125 . . . . 5  |-  ( 2  -  1 )  =  1
2423oveq2i 5936 . . . 4  |-  ( 0 ... ( 2  -  1 ) )  =  ( 0 ... 1
)
2522, 24eleqtrdi 2289 . . 3  |-  ( N  e.  ZZ  ->  ( N  mod  2 )  e.  ( 0 ... 1
) )
26 fz01or 10203 . . 3  |-  ( ( N  mod  2 )  e.  ( 0 ... 1 )  <->  ( ( N  mod  2 )  =  0  \/  ( N  mod  2 )  =  1 ) )
2725, 26sylib 122 . 2  |-  ( N  e.  ZZ  ->  (
( N  mod  2
)  =  0  \/  ( N  mod  2
)  =  1 ) )
289, 19, 27mpjaodan 799 1  |-  ( N  e.  ZZ  ->  (
( N  mod  2
)  =  1  <->  -.  2  ||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034  (class class class)co 5925   0cc0 7896   1c1 7897    - cmin 8214   NNcn 9007   2c2 9058   ZZcz 9343   ...cfz 10100    mod cmo 10431    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fl 10377  df-mod 10432  df-dvds 11970
This theorem is referenced by:  2lgslem3b1  15423  2lgslem3c1  15424
  Copyright terms: Public domain W3C validator