ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismkvnex Unicode version

Theorem ismkvnex 7214
Description: The predicate of being Markov stated in terms of double negation and comparison with  1o. (Contributed by Jim Kingdon, 29-Nov-2023.)
Assertion
Ref Expression
ismkvnex  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) ) )
Distinct variable groups:    A, f, x   
f, V, x

Proof of Theorem ismkvnex
Dummy variables  g  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5553 . . . . . . . . 9  |-  ( g  =  ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) )  -> 
( g `  x
)  =  ( ( z  e.  A  |->  ( 1o  \  ( f `
 z ) ) ) `  x ) )
21eqeq1d 2202 . . . . . . . 8  |-  ( g  =  ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) )  -> 
( ( g `  x )  =  1o  <->  ( ( z  e.  A  |->  ( 1o  \  (
f `  z )
) ) `  x
)  =  1o ) )
32ralbidv 2494 . . . . . . 7  |-  ( g  =  ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) )  -> 
( A. x  e.  A  ( g `  x )  =  1o  <->  A. x  e.  A  ( ( z  e.  A  |->  ( 1o  \  (
f `  z )
) ) `  x
)  =  1o ) )
43notbid 668 . . . . . 6  |-  ( g  =  ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) )  -> 
( -.  A. x  e.  A  ( g `  x )  =  1o  <->  -. 
A. x  e.  A  ( ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) ) `  x )  =  1o ) )
51eqeq1d 2202 . . . . . . 7  |-  ( g  =  ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) )  -> 
( ( g `  x )  =  (/)  <->  (
( z  e.  A  |->  ( 1o  \  (
f `  z )
) ) `  x
)  =  (/) ) )
65rexbidv 2495 . . . . . 6  |-  ( g  =  ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) )  -> 
( E. x  e.  A  ( g `  x )  =  (/)  <->  E. x  e.  A  (
( z  e.  A  |->  ( 1o  \  (
f `  z )
) ) `  x
)  =  (/) ) )
74, 6imbi12d 234 . . . . 5  |-  ( g  =  ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) )  -> 
( ( -.  A. x  e.  A  (
g `  x )  =  1o  ->  E. x  e.  A  ( g `  x )  =  (/) ) 
<->  ( -.  A. x  e.  A  ( (
z  e.  A  |->  ( 1o  \  ( f `
 z ) ) ) `  x )  =  1o  ->  E. x  e.  A  ( (
z  e.  A  |->  ( 1o  \  ( f `
 z ) ) ) `  x )  =  (/) ) ) )
8 elex 2771 . . . . . . 7  |-  ( A  e. Markov  ->  A  e.  _V )
9 ismkvmap 7213 . . . . . . . 8  |-  ( A  e.  _V  ->  ( A  e. Markov  <->  A. g  e.  ( 2o  ^m  A ) ( -.  A. x  e.  A  ( g `  x )  =  1o 
->  E. x  e.  A  ( g `  x
)  =  (/) ) ) )
109biimpd 144 . . . . . . 7  |-  ( A  e.  _V  ->  ( A  e. Markov  ->  A. g  e.  ( 2o  ^m  A
) ( -.  A. x  e.  A  (
g `  x )  =  1o  ->  E. x  e.  A  ( g `  x )  =  (/) ) ) )
118, 10mpcom 36 . . . . . 6  |-  ( A  e. Markov  ->  A. g  e.  ( 2o  ^m  A ) ( -.  A. x  e.  A  ( g `  x )  =  1o 
->  E. x  e.  A  ( g `  x
)  =  (/) ) )
1211adantr 276 . . . . 5  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  A. g  e.  ( 2o  ^m  A
) ( -.  A. x  e.  A  (
g `  x )  =  1o  ->  E. x  e.  A  ( g `  x )  =  (/) ) )
13 elmapi 6724 . . . . . . . . . 10  |-  ( f  e.  ( 2o  ^m  A )  ->  f : A --> 2o )
1413adantl 277 . . . . . . . . 9  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  f : A --> 2o )
1514ffvelcdmda 5693 . . . . . . . 8  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  z  e.  A )  ->  (
f `  z )  e.  2o )
16 2oconcl 6492 . . . . . . . 8  |-  ( ( f `  z )  e.  2o  ->  ( 1o  \  ( f `  z ) )  e.  2o )
1715, 16syl 14 . . . . . . 7  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  z  e.  A )  ->  ( 1o  \  ( f `  z ) )  e.  2o )
1817fmpttd 5713 . . . . . 6  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  (
z  e.  A  |->  ( 1o  \  ( f `
 z ) ) ) : A --> 2o )
19 2onn 6574 . . . . . . . 8  |-  2o  e.  om
2019a1i 9 . . . . . . 7  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  2o  e.  om )
21 simpl 109 . . . . . . 7  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  A  e. Markov )
2220, 21elmapd 6716 . . . . . 6  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  (
( z  e.  A  |->  ( 1o  \  (
f `  z )
) )  e.  ( 2o  ^m  A )  <-> 
( z  e.  A  |->  ( 1o  \  (
f `  z )
) ) : A --> 2o ) )
2318, 22mpbird 167 . . . . 5  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  (
z  e.  A  |->  ( 1o  \  ( f `
 z ) ) )  e.  ( 2o 
^m  A ) )
247, 12, 23rspcdva 2869 . . . 4  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  ( -.  A. x  e.  A  ( ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) ) `  x )  =  1o 
->  E. x  e.  A  ( ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) ) `  x )  =  (/) ) )
25 eqid 2193 . . . . . . . . . 10  |-  ( z  e.  A  |->  ( 1o 
\  ( f `  z ) ) )  =  ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) )
26 fveq2 5554 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
f `  z )  =  ( f `  x ) )
2726difeq2d 3277 . . . . . . . . . 10  |-  ( z  =  x  ->  ( 1o  \  ( f `  z ) )  =  ( 1o  \  (
f `  x )
) )
28 simpr 110 . . . . . . . . . 10  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  x  e.  A )
29 1oex 6477 . . . . . . . . . . 11  |-  1o  e.  _V
30 difexg 4170 . . . . . . . . . . 11  |-  ( 1o  e.  _V  ->  ( 1o  \  ( f `  x ) )  e. 
_V )
3129, 30mp1i 10 . . . . . . . . . 10  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  ( 1o  \  ( f `  x ) )  e. 
_V )
3225, 27, 28, 31fvmptd3 5651 . . . . . . . . 9  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( z  e.  A  |->  ( 1o  \  (
f `  z )
) ) `  x
)  =  ( 1o 
\  ( f `  x ) ) )
3332eqeq1d 2202 . . . . . . . 8  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) ) `  x )  =  1o  <->  ( 1o  \  ( f `
 x ) )  =  1o ) )
34 difeq2 3271 . . . . . . . . . . . 12  |-  ( ( f `  x )  =  (/)  ->  ( 1o 
\  ( f `  x ) )  =  ( 1o  \  (/) ) )
35 dif0 3517 . . . . . . . . . . . 12  |-  ( 1o 
\  (/) )  =  1o
3634, 35eqtrdi 2242 . . . . . . . . . . 11  |-  ( ( f `  x )  =  (/)  ->  ( 1o 
\  ( f `  x ) )  =  1o )
3736adantl 277 . . . . . . . . . 10  |-  ( ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A ) )  /\  x  e.  A
)  /\  ( f `  x )  =  (/) )  ->  ( 1o  \ 
( f `  x
) )  =  1o )
38 1n0 6485 . . . . . . . . . . . . 13  |-  1o  =/=  (/)
3938nesymi 2410 . . . . . . . . . . . 12  |-  -.  (/)  =  1o
40 eqeq1 2200 . . . . . . . . . . . 12  |-  ( ( f `  x )  =  (/)  ->  ( ( f `  x )  =  1o  <->  (/)  =  1o ) )
4139, 40mtbiri 676 . . . . . . . . . . 11  |-  ( ( f `  x )  =  (/)  ->  -.  (
f `  x )  =  1o )
4241adantl 277 . . . . . . . . . 10  |-  ( ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A ) )  /\  x  e.  A
)  /\  ( f `  x )  =  (/) )  ->  -.  ( f `  x )  =  1o )
4337, 422thd 175 . . . . . . . . 9  |-  ( ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A ) )  /\  x  e.  A
)  /\  ( f `  x )  =  (/) )  ->  ( ( 1o 
\  ( f `  x ) )  =  1o  <->  -.  ( f `  x )  =  1o ) )
44 difid 3515 . . . . . . . . . . . . . 14  |-  ( 1o 
\  1o )  =  (/)
4544eqeq1i 2201 . . . . . . . . . . . . 13  |-  ( ( 1o  \  1o )  =  1o  <->  (/)  =  1o )
4639, 45mtbir 672 . . . . . . . . . . . 12  |-  -.  ( 1o  \  1o )  =  1o
47 difeq2 3271 . . . . . . . . . . . . 13  |-  ( ( f `  x )  =  1o  ->  ( 1o  \  ( f `  x ) )  =  ( 1o  \  1o ) )
4847eqeq1d 2202 . . . . . . . . . . . 12  |-  ( ( f `  x )  =  1o  ->  (
( 1o  \  (
f `  x )
)  =  1o  <->  ( 1o  \  1o )  =  1o ) )
4946, 48mtbiri 676 . . . . . . . . . . 11  |-  ( ( f `  x )  =  1o  ->  -.  ( 1o  \  (
f `  x )
)  =  1o )
5049adantl 277 . . . . . . . . . 10  |-  ( ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A ) )  /\  x  e.  A
)  /\  ( f `  x )  =  1o )  ->  -.  ( 1o  \  ( f `  x ) )  =  1o )
51 notnot 630 . . . . . . . . . . 11  |-  ( ( f `  x )  =  1o  ->  -.  -.  ( f `  x
)  =  1o )
5251adantl 277 . . . . . . . . . 10  |-  ( ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A ) )  /\  x  e.  A
)  /\  ( f `  x )  =  1o )  ->  -.  -.  (
f `  x )  =  1o )
5350, 522falsed 703 . . . . . . . . 9  |-  ( ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A ) )  /\  x  e.  A
)  /\  ( f `  x )  =  1o )  ->  ( ( 1o  \  ( f `  x ) )  =  1o  <->  -.  ( f `  x )  =  1o ) )
5414ffvelcdmda 5693 . . . . . . . . . . 11  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
f `  x )  e.  2o )
55 df2o3 6483 . . . . . . . . . . 11  |-  2o  =  { (/) ,  1o }
5654, 55eleqtrdi 2286 . . . . . . . . . 10  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
f `  x )  e.  { (/) ,  1o }
)
57 elpri 3641 . . . . . . . . . 10  |-  ( ( f `  x )  e.  { (/) ,  1o }  ->  ( ( f `
 x )  =  (/)  \/  ( f `  x )  =  1o ) )
5856, 57syl 14 . . . . . . . . 9  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( f `  x
)  =  (/)  \/  (
f `  x )  =  1o ) )
5943, 53, 58mpjaodan 799 . . . . . . . 8  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( 1o  \  (
f `  x )
)  =  1o  <->  -.  (
f `  x )  =  1o ) )
6033, 59bitrd 188 . . . . . . 7  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) ) `  x )  =  1o  <->  -.  ( f `  x
)  =  1o ) )
6160ralbidva 2490 . . . . . 6  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  ( A. x  e.  A  ( ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) ) `  x )  =  1o  <->  A. x  e.  A  -.  ( f `  x
)  =  1o ) )
6261notbid 668 . . . . 5  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  ( -.  A. x  e.  A  ( ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) ) `  x )  =  1o  <->  -. 
A. x  e.  A  -.  ( f `  x
)  =  1o ) )
63 ralnex 2482 . . . . . 6  |-  ( A. x  e.  A  -.  ( f `  x
)  =  1o  <->  -.  E. x  e.  A  ( f `  x )  =  1o )
6463notbii 669 . . . . 5  |-  ( -. 
A. x  e.  A  -.  ( f `  x
)  =  1o  <->  -.  -.  E. x  e.  A  (
f `  x )  =  1o )
6562, 64bitrdi 196 . . . 4  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  ( -.  A. x  e.  A  ( ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) ) `  x )  =  1o  <->  -. 
-.  E. x  e.  A  ( f `  x
)  =  1o ) )
6632eqeq1d 2202 . . . . . 6  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) ) `  x )  =  (/)  <->  ( 1o  \  ( f `  x ) )  =  (/) ) )
6735eqeq1i 2201 . . . . . . . . . . 11  |-  ( ( 1o  \  (/) )  =  (/) 
<->  1o  =  (/) )
6838, 67nemtbir 2453 . . . . . . . . . 10  |-  -.  ( 1o  \  (/) )  =  (/)
6934eqeq1d 2202 . . . . . . . . . 10  |-  ( ( f `  x )  =  (/)  ->  ( ( 1o  \  ( f `
 x ) )  =  (/)  <->  ( 1o  \  (/) )  =  (/) ) )
7068, 69mtbiri 676 . . . . . . . . 9  |-  ( ( f `  x )  =  (/)  ->  -.  ( 1o  \  ( f `  x ) )  =  (/) )
7170adantl 277 . . . . . . . 8  |-  ( ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A ) )  /\  x  e.  A
)  /\  ( f `  x )  =  (/) )  ->  -.  ( 1o  \  ( f `  x
) )  =  (/) )
7271, 422falsed 703 . . . . . . 7  |-  ( ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A ) )  /\  x  e.  A
)  /\  ( f `  x )  =  (/) )  ->  ( ( 1o 
\  ( f `  x ) )  =  (/) 
<->  ( f `  x
)  =  1o ) )
7347, 44eqtrdi 2242 . . . . . . . . 9  |-  ( ( f `  x )  =  1o  ->  ( 1o  \  ( f `  x ) )  =  (/) )
7473adantl 277 . . . . . . . 8  |-  ( ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A ) )  /\  x  e.  A
)  /\  ( f `  x )  =  1o )  ->  ( 1o  \  ( f `  x
) )  =  (/) )
75 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A ) )  /\  x  e.  A
)  /\  ( f `  x )  =  1o )  ->  ( f `  x )  =  1o )
7674, 752thd 175 . . . . . . 7  |-  ( ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A ) )  /\  x  e.  A
)  /\  ( f `  x )  =  1o )  ->  ( ( 1o  \  ( f `  x ) )  =  (/) 
<->  ( f `  x
)  =  1o ) )
7772, 76, 58mpjaodan 799 . . . . . 6  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( 1o  \  (
f `  x )
)  =  (/)  <->  ( f `  x )  =  1o ) )
7866, 77bitrd 188 . . . . 5  |-  ( ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) ) `  x )  =  (/)  <->  (
f `  x )  =  1o ) )
7978rexbidva 2491 . . . 4  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  ( E. x  e.  A  ( ( z  e.  A  |->  ( 1o  \ 
( f `  z
) ) ) `  x )  =  (/)  <->  E. x  e.  A  (
f `  x )  =  1o ) )
8024, 65, 793imtr3d 202 . . 3  |-  ( ( A  e. Markov  /\  f  e.  ( 2o  ^m  A
) )  ->  ( -.  -.  E. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  1o ) )
8180ralrimiva 2567 . 2  |-  ( A  e. Markov  ->  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )
82 elex 2771 . . . . 5  |-  ( A  e.  V  ->  A  e.  _V )
8382adantr 276 . . . 4  |-  ( ( A  e.  V  /\  A. f  e.  ( 2o 
^m  A ) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  1o ) )  ->  A  e.  _V )
84 fveq1 5553 . . . . . . . . . . . 12  |-  ( f  =  ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) )  -> 
( f `  x
)  =  ( ( z  e.  A  |->  ( 1o  \  ( g `
 z ) ) ) `  x ) )
8584eqeq1d 2202 . . . . . . . . . . 11  |-  ( f  =  ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) )  -> 
( ( f `  x )  =  1o  <->  ( ( z  e.  A  |->  ( 1o  \  (
g `  z )
) ) `  x
)  =  1o ) )
8685rexbidv 2495 . . . . . . . . . 10  |-  ( f  =  ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) )  -> 
( E. x  e.  A  ( f `  x )  =  1o  <->  E. x  e.  A  ( ( z  e.  A  |->  ( 1o  \  (
g `  z )
) ) `  x
)  =  1o ) )
8786notbid 668 . . . . . . . . 9  |-  ( f  =  ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) )  -> 
( -.  E. x  e.  A  ( f `  x )  =  1o  <->  -. 
E. x  e.  A  ( ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) ) `  x )  =  1o ) )
8887notbid 668 . . . . . . . 8  |-  ( f  =  ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) )  -> 
( -.  -.  E. x  e.  A  (
f `  x )  =  1o  <->  -.  -.  E. x  e.  A  ( (
z  e.  A  |->  ( 1o  \  ( g `
 z ) ) ) `  x )  =  1o ) )
8988, 86imbi12d 234 . . . . . . 7  |-  ( f  =  ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) )  -> 
( ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o )  <->  ( -.  -.  E. x  e.  A  ( ( z  e.  A  |->  ( 1o  \  (
g `  z )
) ) `  x
)  =  1o  ->  E. x  e.  A  ( ( z  e.  A  |->  ( 1o  \  (
g `  z )
) ) `  x
)  =  1o ) ) )
90 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )
91 elmapi 6724 . . . . . . . . . . . 12  |-  ( g  e.  ( 2o  ^m  A )  ->  g : A --> 2o )
9291adantl 277 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  g : A --> 2o )
9392ffvelcdmda 5693 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  z  e.  A )  ->  (
g `  z )  e.  2o )
94 2oconcl 6492 . . . . . . . . . 10  |-  ( ( g `  z )  e.  2o  ->  ( 1o  \  ( g `  z ) )  e.  2o )
9593, 94syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  z  e.  A )  ->  ( 1o  \  ( g `  z ) )  e.  2o )
9695fmpttd 5713 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  (
z  e.  A  |->  ( 1o  \  ( g `
 z ) ) ) : A --> 2o )
9719a1i 9 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  2o  e.  om )
98 simpll 527 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  A  e.  V )
9997, 98elmapd 6716 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  (
( z  e.  A  |->  ( 1o  \  (
g `  z )
) )  e.  ( 2o  ^m  A )  <-> 
( z  e.  A  |->  ( 1o  \  (
g `  z )
) ) : A --> 2o ) )
10096, 99mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  (
z  e.  A  |->  ( 1o  \  ( g `
 z ) ) )  e.  ( 2o 
^m  A ) )
10189, 90, 100rspcdva 2869 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( -.  -.  E. x  e.  A  ( ( z  e.  A  |->  ( 1o 
\  ( g `  z ) ) ) `
 x )  =  1o  ->  E. x  e.  A  ( (
z  e.  A  |->  ( 1o  \  ( g `
 z ) ) ) `  x )  =  1o ) )
102 ralnex 2482 . . . . . . . 8  |-  ( A. x  e.  A  -.  ( ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) ) `  x )  =  1o  <->  -. 
E. x  e.  A  ( ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) ) `  x )  =  1o )
103102notbii 669 . . . . . . 7  |-  ( -. 
A. x  e.  A  -.  ( ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) ) `  x )  =  1o  <->  -. 
-.  E. x  e.  A  ( ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) ) `  x )  =  1o )
104 nfv 1539 . . . . . . . . . . 11  |-  F/ x  A  e.  V
105 nfcv 2336 . . . . . . . . . . . 12  |-  F/_ x
( 2o  ^m  A
)
106 nfre1 2537 . . . . . . . . . . . . . . 15  |-  F/ x E. x  e.  A  ( f `  x
)  =  1o
107106nfn 1669 . . . . . . . . . . . . . 14  |-  F/ x  -.  E. x  e.  A  ( f `  x
)  =  1o
108107nfn 1669 . . . . . . . . . . . . 13  |-  F/ x  -.  -.  E. x  e.  A  ( f `  x )  =  1o
109108, 106nfim 1583 . . . . . . . . . . . 12  |-  F/ x
( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o )
110105, 109nfralxy 2532 . . . . . . . . . . 11  |-  F/ x A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  1o )
111104, 110nfan 1576 . . . . . . . . . 10  |-  F/ x
( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )
112 nfv 1539 . . . . . . . . . 10  |-  F/ x  g  e.  ( 2o  ^m  A )
113111, 112nfan 1576 . . . . . . . . 9  |-  F/ x
( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )
114 eqid 2193 . . . . . . . . . . . . 13  |-  ( z  e.  A  |->  ( 1o 
\  ( g `  z ) ) )  =  ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) )
115 fveq2 5554 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
g `  z )  =  ( g `  x ) )
116115difeq2d 3277 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  ( 1o  \  ( g `  z ) )  =  ( 1o  \  (
g `  x )
) )
117 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  x  e.  A )
118 difexg 4170 . . . . . . . . . . . . . 14  |-  ( 1o  e.  _V  ->  ( 1o  \  ( g `  x ) )  e. 
_V )
11929, 118mp1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  ( 1o  \  ( g `  x ) )  e. 
_V )
120114, 116, 117, 119fvmptd3 5651 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( z  e.  A  |->  ( 1o  \  (
g `  z )
) ) `  x
)  =  ( 1o 
\  ( g `  x ) ) )
121120eqeq1d 2202 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) ) `  x )  =  1o  <->  ( 1o  \  ( g `
 x ) )  =  1o ) )
122121notbid 668 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  ( -.  ( ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) ) `  x )  =  1o  <->  -.  ( 1o  \  (
g `  x )
)  =  1o ) )
123 difeq2 3271 . . . . . . . . . . . . . . 15  |-  ( ( g `  x )  =  (/)  ->  ( 1o 
\  ( g `  x ) )  =  ( 1o  \  (/) ) )
124123, 35eqtrdi 2242 . . . . . . . . . . . . . 14  |-  ( ( g `  x )  =  (/)  ->  ( 1o 
\  ( g `  x ) )  =  1o )
125124adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -. 
-.  E. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  /\  (
g `  x )  =  (/) )  ->  ( 1o  \  ( g `  x ) )  =  1o )
126125notnotd 631 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -. 
-.  E. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  /\  (
g `  x )  =  (/) )  ->  -.  -.  ( 1o  \  (
g `  x )
)  =  1o )
127 eqeq1 2200 . . . . . . . . . . . . . 14  |-  ( ( g `  x )  =  (/)  ->  ( ( g `  x )  =  1o  <->  (/)  =  1o ) )
12839, 127mtbiri 676 . . . . . . . . . . . . 13  |-  ( ( g `  x )  =  (/)  ->  -.  (
g `  x )  =  1o )
129128adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -. 
-.  E. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  /\  (
g `  x )  =  (/) )  ->  -.  ( g `  x
)  =  1o )
130126, 1292falsed 703 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -. 
-.  E. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  /\  (
g `  x )  =  (/) )  ->  ( -.  ( 1o  \  (
g `  x )
)  =  1o  <->  ( g `  x )  =  1o ) )
131 difeq2 3271 . . . . . . . . . . . . . . 15  |-  ( ( g `  x )  =  1o  ->  ( 1o  \  ( g `  x ) )  =  ( 1o  \  1o ) )
132131eqeq1d 2202 . . . . . . . . . . . . . 14  |-  ( ( g `  x )  =  1o  ->  (
( 1o  \  (
g `  x )
)  =  1o  <->  ( 1o  \  1o )  =  1o ) )
13346, 132mtbiri 676 . . . . . . . . . . . . 13  |-  ( ( g `  x )  =  1o  ->  -.  ( 1o  \  (
g `  x )
)  =  1o )
134133adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -. 
-.  E. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  /\  (
g `  x )  =  1o )  ->  -.  ( 1o  \  (
g `  x )
)  =  1o )
135 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -. 
-.  E. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  /\  (
g `  x )  =  1o )  ->  (
g `  x )  =  1o )
136134, 1352thd 175 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -. 
-.  E. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  /\  (
g `  x )  =  1o )  ->  ( -.  ( 1o  \  (
g `  x )
)  =  1o  <->  ( g `  x )  =  1o ) )
13791ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  g : A --> 2o )
138137, 117ffvelcdmd 5694 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
g `  x )  e.  2o )
139138, 55eleqtrdi 2286 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
g `  x )  e.  { (/) ,  1o }
)
140 elpri 3641 . . . . . . . . . . . 12  |-  ( ( g `  x )  e.  { (/) ,  1o }  ->  ( ( g `
 x )  =  (/)  \/  ( g `  x )  =  1o ) )
141139, 140syl 14 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( g `  x
)  =  (/)  \/  (
g `  x )  =  1o ) )
142130, 136, 141mpjaodan 799 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  ( -.  ( 1o  \  (
g `  x )
)  =  1o  <->  ( g `  x )  =  1o ) )
143122, 142bitrd 188 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  ( -.  ( ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) ) `  x )  =  1o  <->  ( g `  x )  =  1o ) )
144113, 143ralbida 2488 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( A. x  e.  A  -.  ( ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) ) `  x )  =  1o  <->  A. x  e.  A  ( g `  x )  =  1o ) )
145144notbid 668 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( -.  A. x  e.  A  -.  ( ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) ) `  x )  =  1o  <->  -. 
A. x  e.  A  ( g `  x
)  =  1o ) )
146103, 145bitr3id 194 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( -.  -.  E. x  e.  A  ( ( z  e.  A  |->  ( 1o 
\  ( g `  z ) ) ) `
 x )  =  1o  <->  -.  A. x  e.  A  ( g `  x )  =  1o ) )
147 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -. 
-.  E. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  /\  (
g `  x )  =  (/) )  ->  (
g `  x )  =  (/) )
148125, 1472thd 175 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -. 
-.  E. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  /\  (
g `  x )  =  (/) )  ->  (
( 1o  \  (
g `  x )
)  =  1o  <->  ( g `  x )  =  (/) ) )
149128, 135nsyl3 627 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -. 
-.  E. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  /\  (
g `  x )  =  1o )  ->  -.  ( g `  x
)  =  (/) )
150134, 1492falsed 703 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -. 
-.  E. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  /\  (
g `  x )  =  1o )  ->  (
( 1o  \  (
g `  x )
)  =  1o  <->  ( g `  x )  =  (/) ) )
151148, 150, 141mpjaodan 799 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( 1o  \  (
g `  x )
)  =  1o  <->  ( g `  x )  =  (/) ) )
152121, 151bitrd 188 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A
) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  /\  x  e.  A )  ->  (
( ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) ) `  x )  =  1o  <->  ( g `  x )  =  (/) ) )
153113, 152rexbida 2489 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( E. x  e.  A  ( ( z  e.  A  |->  ( 1o  \ 
( g `  z
) ) ) `  x )  =  1o  <->  E. x  e.  A  ( g `  x )  =  (/) ) )
154101, 146, 1533imtr3d 202 . . . . 5  |-  ( ( ( A  e.  V  /\  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) )  /\  g  e.  ( 2o  ^m  A
) )  ->  ( -.  A. x  e.  A  ( g `  x
)  =  1o  ->  E. x  e.  A  ( g `  x )  =  (/) ) )
155154ralrimiva 2567 . . . 4  |-  ( ( A  e.  V  /\  A. f  e.  ( 2o 
^m  A ) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  1o ) )  ->  A. g  e.  ( 2o  ^m  A
) ( -.  A. x  e.  A  (
g `  x )  =  1o  ->  E. x  e.  A  ( g `  x )  =  (/) ) )
1569biimprd 158 . . . 4  |-  ( A  e.  _V  ->  ( A. g  e.  ( 2o  ^m  A ) ( -.  A. x  e.  A  ( g `  x )  =  1o 
->  E. x  e.  A  ( g `  x
)  =  (/) )  ->  A  e. Markov ) )
15783, 155, 156sylc 62 . . 3  |-  ( ( A  e.  V  /\  A. f  e.  ( 2o 
^m  A ) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  1o ) )  ->  A  e. Markov )
158157ex 115 . 2  |-  ( A  e.  V  ->  ( A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  1o )  ->  A  e. Markov )
)
15981, 158impbid2 143 1  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( 2o  ^m  A ) ( -.  -.  E. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  1o ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760    \ cdif 3150   (/)c0 3446   {cpr 3619    |-> cmpt 4090   omcom 4622   -->wf 5250   ` cfv 5254  (class class class)co 5918   1oc1o 6462   2oc2o 6463    ^m cmap 6702  Markovcmarkov 7210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-map 6704  df-markov 7211
This theorem is referenced by:  subctctexmid  15491
  Copyright terms: Public domain W3C validator